

test & MEASUREMENT WORLD

THE MAGAZINE FOR QUALITY IN ELECTRONICS

PROJECT PROFILE**Four-port calibrated structures****21****READER SURVEY****Fears temper career satisfaction****32****ATE****Continuity testing****39****EMC TEST****Quick EMC screening****47**

Jean Marc Delplanque,
leader of GE Healthcare
Technologies' design-
for-manufacturing team.

TESTING FOR LIFE'S SAKE

Close cooperation among
a global engineering team led to
the success of the LightSpeed
VCT medical scanner.

Page 22

I'm not just a Lens.

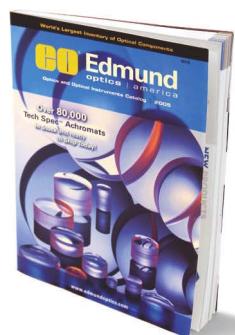
I'm a TECH SPEC™ Plano-Convex Lens.

I'm designed by Edmund.

I'm manufactured by Edmund.

I'm tested by Edmund.

And I'm in stock and ready for you to order me.



Edmund Optics™ TECH SPEC™ Plano-Convex

Lenses are just one of the over 12,000 products available to purchase today.

Request a
NEW catalog today!

www.edmundoptics.com/TM
e-mail: TMW05@edmundoptics.com

See Us at ROBOTS & VISION, Booth #1515

EO® **Edmund**
optics | america

www.edmundoptics.com | 800.363.1992

What's **NEW** at **omega.com**

Please Call to Receive Your **FREE OMEGA**
Dilbert Bluecat New Horizons® in Data Acquisition Systems
 or Visit Our Website: etestandmeasurement.com

Shop Online

etestandmeasurement.com

**HOT OFF
THE PRESS!**

- ✓ Over 136 Full Color Pages
- ✓ 96 Dilbert Cartoons
- ✓ Web Enabled Devices
- ✓ Data Acquisition Cards & Systems
- ✓ Data Loggers
- ✓ Wireless Devices

Also **FREE!**
 CD-ROM with Complete
 OMEGA® Library &
 TRANSACTIONS™

Lit Code: TM38

For **FREE** Literature, Call **TOLL FREE**

1-866-6634282®
1-866-OMEGA-TC

© COPYRIGHT 2005 OMEGA ENGINEERING, INC. ALL RIGHTS RESERVED

For Sales and Service, Call **TOLL FREE**

1-888-8266342®
1-888-TC-OMEGA

Handbook Cover: Based on an original Norman Rockwell illustration ©1961 The Curtis Publishing Company

Shop Online at

omega.com
 OMEGA®

One Source Online For All Your Automation Needs

- ▶ Wide selection of products direct from the manufacturer
- ▶ Free expert help available from our pros
- ▶ Free 60-day evaluation period
- ▶ Fast effective delivery
- ▶ Commitment to manufacturing quality

Industrial Ethernet Switches starting at **\$95***

Wireless Ethernet I/O Modules starting at **\$550**

Industrial Panel PCs starting at **\$1,922**

Isolated Digital I/O Cards starting at **\$180**

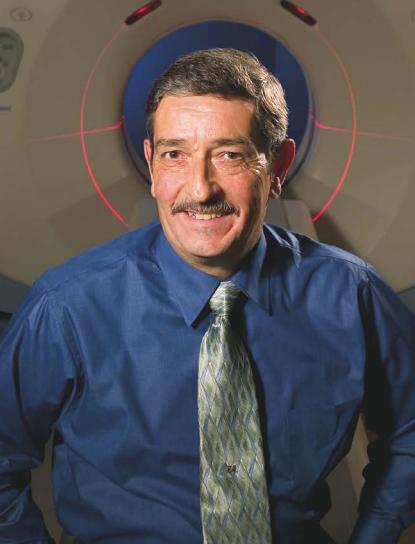
Automation
Controllers

Automation
Software

Distributed
I/O Modules

Industrial
Communication

Industrial
Computers



Operator Interface
Terminals

Plug-in I/O
DAQ & Motion

* List price for switch shown is \$370
See website for details on special offers.

COVER BY: TIM EVANS

DEPARTMENTS

- 5 Editor's note
- 7 Test voices
- 9 News briefs
- 13 Show highlights
- 53 Product update
- 60 Viewpoint
- 5 Editorial staff
- 58 Business staff
- 58 Advertiser index

TECH TRENDS

- 15 Bench-level test
- 17 Manufacturing test

TEST DIGEST

- 18 Calibrate current clamps
- 18 Power measurement and analysis
- 19 A bird's eye view of IC fabrication

Test & MEASUREMENT WORLD®

AUGUST 2005
VOL. 25 • NO. 7

CONTENTS

FEATURES

21 PROJECT PROFILE
Four-port calibrated structures
Engineers at M/A-COM developed a new calibration theory that allowed them to compensate for earlier errors in calibration.
Martin Rowe, Senior Technical Editor

22 MEDICAL TEST COVER STORY
Testing for life's sake
Close cooperation among a global engineering team led to the success of the LightSpeed VCT medical scanner.
Lawrence D. Maloney, Contributing Editor

32 READER SURVEY
Fears temper career satisfaction
Although satisfied with their jobs, test engineers worry about the effects of outsourcing.
Lawrence D. Maloney, Contributing Editor

39 ATE
Continuity testing
Array packages with high I/O counts require new test techniques for screening out wire-bond and other defects.
C.H. Lim, National Semiconductor

47 EMC TEST
Quick EMC screening
Simple component tests minimize the risk of non-compliance and cut evaluation time by 70%.
Michael Taylor, Hach Co.

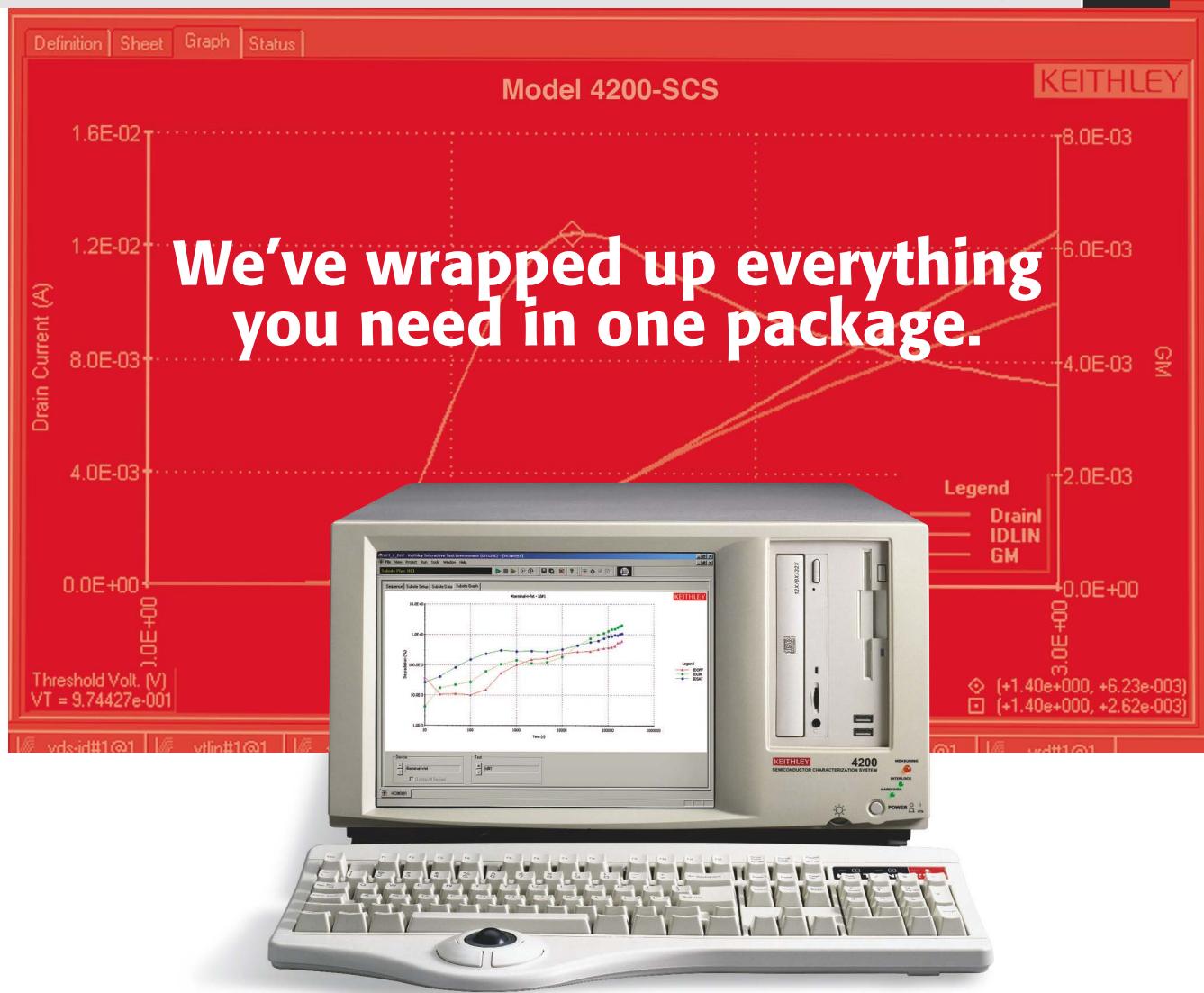
TEST REPORT SUPPLEMENTS

For some readers, this issue contains:

Machine-Vision & Inspection Test Report

- Keeping track: Evolving standards
- Closing the gap between AXI and semi-automated systems
- Meeting the lead-free inspection challenge

Others wishing to read this supplement can access it in the online version of this issue at www.tmworld.com.


www.tmworld.com

Visit Test & Measurement World's home page

► **Blog: Taking the measure**

Read what chief editor Rick Nelson has to say about test, measurement, globalization, machine vision, the engineering profession—and whatever else crosses his mind. Be sure to add your comments, too. www.tmworld.com/blog.

RENEW YOUR T&MW SUBSCRIPTION ONLINE: WWW.GETFREEMAG.COM/TMW

device characterization • parametric I-V analysis • stress-measure • reliability tests • device modeling • materials research

The Model 4200-SCS, the industry's most popular and productive parametric analyzer, is now your best choice for reliability testing, too. New stress-measure capabilities in our 5.0 software release simplify testing. Exceptional current sensitivity (to 100 attoamps) and an intuitive Windows XP® interface make the Model 4200-SCS the best, most cost-effective solution for a growing list of applications:

- Semiconductor technology development
- Incoming inspection, failure analysis
- Device reliability and lifetime testing
- Nanotechnology research
- High and low κ dielectrics
- Organic LEDs
- Hall Effect and Van der Pauw testing
- Semiconductor process integration
- RFIC, high power MOSFET/BJT

**For a demo, contact us at 1-800-588-9238 or
for more information, visit www.keithley.com/at/212**

KEITHLEY

A GREATER MEASURE OF CONFIDENCE

info@keithley.com • 1-800-588-9238 • Fax 440-248-6168

EDITORIAL STAFF

Chief Editor: Rick Nelson
rnelson@tmworld.com
ATE & EDA, Inspection, Failure Analysis, Wireless Test, Software, Environmental Test

Managing Editor: Deborah M. Sargent
dsargent@tmworld.com

Senior Technical Editor: Martin Rowe
m.rowe@tmworld.com
Instruments, Telecom Test, Fiber-Optics, EMC Test, Data-Analysis Software

Assistant Managing Editor: Naomi Eigner Price
neprice@tmworld.com

Contributing Technical Editors:

Jon Titus, jontitus@comcast.net
Bradley J. Thompson, brad@tmworld.com
Steve Scheiber, sscheiber@aol.com
Greg Reed, editor@aatr.net
Richard A. Quinnell, richquinnell@att.net

Publisher:
Russell E. Pratt

Senior Art Director: Judy Hunchard
Senior Art Director/Illustrator: Dan Guidera

Director of Creative Services: Norman Graf
Manager/Creative Services: Gloria Middlebrooks
Prepress Manager: Adam Odoardi
Ad Layout Artist: Susan Jeune

Circulation Manager: LaGina Thomas
303-470-4328; lthomas@reedbusiness.com

Reprints: RSi Copyright, 800-217-7874
rbsreprints@rsicopyright.com

Direct Mail: Anne Marie LeGrand, 630-288-8348

List Rental: Julie Cronin, jcronin@dm2lists.com

**Reed Business Information,
A Division of Reed Elsevier Inc.**

CEO: Jim Casella

Newton Division President:
Stephen Moylan

Chief Financial Officer: John Poulin

HOW TO CONTACT T&MW

EDITORIAL:
225 Wyman St., Waltham, MA 02451
Phone: 781-734-8423
Fax: 781-734-8070
E-mail: tmw@reedbusiness.com
Web: www.tmworld.com

SUBSCRIPTIONS:

For address changes, cancellations, or questions about your subscription, please contact:

Customer Service
Reed Business Information
8878 S. Barrons Blvd.
Highlands Ranch, CO 80129
Phone: 800-446-6551
Fax: 303-470-4280
E-mail: jrvner@reedbusiness.com
Web: www.getfreemag.com/tmw

Subscribe to T&MW online:
www.getfreemag.com/tmw

Open system, or competitor?

The Semiconductor Test Consortium chose Semicon West last month to tout its progress since its debut at Semicon West 2002. That progress has been significant, as the STC has pursued its goal of supporting the development of its OpenStar architecture, which defines hardware and software standards that compliant semiconductor test products must meet.

Specific goals range from the release of the original specification and Advantest's T2000 test system to the recent introductions of instruments such as Apria Technology's

RICK NELSON, CHIEF EDITOR

OpenStar-compliant arbitrary waveform generator and digitizer modules and a 6.5-Gbps Serdes test module from Advantest itself. As a measure of the platform's growing acceptance, the consortium announced in June that Toshiba is installing T2000 systems for wafer and package test. As for STC membership, the recent additions of OptimalTest and PX Instrument Technology have swelled the roster to 38 companies.

STC chairman Bill Price, who represents member company

Philips, told a Semicon West audience that vendors with open-architecture offerings will be well positioned to profit from what he sees as a shift in revenue away from ATE platforms and toward instruments, software, and services.

But John E. Bearden, who became an independent test consultant after retiring from IBM, told the audience that based on surveys he has conducted, major users now see open-architecture approaches as "nice to have, but not must have." Their concerns, he said, center on instrument-module availability and price. He also mentioned concerns of the third parties who are considering building OpenStar instruments—these companies, he said, would be more likely to participate if they had a good way to estimate demand.

The ultimate test of OpenStar success would be an embrace of the standard by big-iron ATE vendors in addition to Advantest. But ATE makers are actively pursuing their own approaches, such as Teradyne's OpenFlex initiative, under which GuideTech has qualified its Femto 2000 continuous timing interval analyzer for the Teradyne Flex ATE platform. Credence Systems is pursuing its own open-architecture efforts with its Sapphire platform and has designed its Sapphire D-10 to work with off-the-shelf CompactPCI instruments.

It's worth noting that major semiconductor manufacturers have yet to insist that all future test-equipment purchases be OpenStar-compliant. Even STC chairman Price of Philips won't go that far.

Consequently, OpenStar systems are shaping up to be worthy competitors to the 93000s, Flexes, Fusions, and Sapphires out there, but the dream of an industry-wide single test platform remains just that. T&MW

**Customers have
yet to insist on
full OpenStar
compliance.**

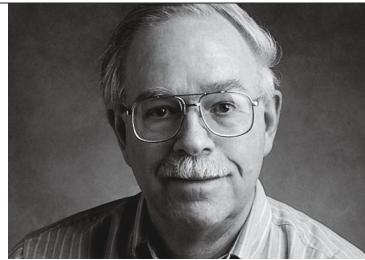
Contact Rick Nelson at rnelson@tmworld.com.

Snap into the future with MMPX

Snap connector series for operating frequencies up to 65 Ghz
and digital transmission rates of 40 Gbps

- true 65 GHz PCB link
- linear VSWR from DC to 65 GHz
- excellent shielding
- established snap mechanism
- HUBER+SUHNER MMCX compatible

MMPX – quick and reliable matings, cost savings,
one connector for several applications



HUBER+SUHNER

USA and Canada:
Toll free 1 866 HUBER SUHNER
(1-866-482-3778)
Fax: 1-847-397-2882
www.hubersuhnerinc.com

HUBER+SUHNER AG
RF Communications
CH-9100 Herisau, Switzerland
Phone +41 (0)71 353 41 11
Fax +41 (0)71 353 45 90
www.hubersuhner.com

BRAD THOMPSON
CONTRIBUTING TECHNICAL EDITOR
brad@tmworld.com

Remember your first “experiment”?

The test and measurement profession owes much to the scientific method of observing, devising a theory to explain the observation, experimenting to test the theory, and publishing the results—unless you’re nine years old, in which case you proceed directly to the experimental phase just to see what the hell will happen.

As a recent amateur-radio newsgroup thread shows, the latter method inspired many careers in electronics. I won’t embarrass anyone by using names, but the next time a would-be engineer sets fire to your garage, remember the following contributors who survived to become skilled technical professionals:

“I was four years old, and was playing ‘motorboat’. Mine had two imaginary engines. Stuck a metal key into one outlet slot—revved it up. Now to fire up engine No. 2...bam! Blue lights flashing across

the darkness of my clenched eyes. I don’t recall the jolt, but boy, do I remember the ‘blue lights’.”

“I tried recharging a 9-V alkaline battery. I thought I was successful, but the battery made a loud bang three days later, inside a clock on the wall.”

“Mine was a 150-V electrolytic capacitor at the age of 14 or so. Put it across a 275-V power supply that I had built on a round cake tin. The explosion was very loud and it took hours to clean up all the paper and

electrolyte that had sprayed all over the shed walls, floor, and ceiling!”

“My earliest battery experiment was not as sophisticated: “D” cell with a nail driven into each end. Lamp cord twisted around nails and then plugged in. I can still recall the very loud resulting bang. My mother, who was out at the time, was very impressed by the strange smell hanging around when she returned home.”

“I’m sitting at the kitchen table talking with my wife. Suddenly over her shoulder I see a major flash come from the hall that leads to the kid’s rooms. There’s my youngest (eight years old) standing with eyes wide open. On the ground next to him is a line cord [with] alligator clips. Attached to the alligator clips is the carcass of a 9-V battery. Surrounding the whole mess is a black powder coating the floor. Smoke hovers over the scene. As soon as I got out of the room, I couldn’t help laughing to myself. That could easily have been me decades earlier. Maybe he’s ready for some lessons in electricity.” T&MW

DON’T TRY THESE AT HOME (UNLESS ACCOMPANIED BY A NINE YEAR OLD)

Are we in danger of losing our next generation of technologically savvy people to video games, cell phones, and instant messaging? It may take more than a few minor explosions or fulminating arcs to revive kids’ interest in applied science and technology, but here are a few starters.

Entitled “Unwise Microwave Oven Experiments,” this site describes Man’s inhumanity to an innocent kitchen appliance: www.amasci.com/weird/microexp.html

For a less-explosive experience, learn how an oatmeal box, a hunk of crystalline galena (lead ore), and a few more components can receive radio signals: www.midnightscience.com www.thebest.net/wuggy/build.htm

No visit to the stranger side of electronics would be complete without a Tesla coil or two—learn about a 122-footer at: www.lod.org

Not exactly electronic in nature, but surely you can add flight instrumentation to your potatoes: platinumchromatography.com/potato.htm

If the process of accelerating hapless vegetables to high speeds strikes you as routine, consider building an electromagnetic rail gun: www.powerlabs.org/railgun.htm

... or crushing beverage cans and atomizing water via high voltage: www.powerlabs.org/highvoltage.htm

You can shrink heads (and tails) by exposing coins to extreme electromagnetic forces: teslamania.delete.org/frames/shrinkergallery.html

If u cn rd this, u may be an extraterrestrial. How an organization devoted to greeting any ETs among us used a screened room, a spectrum analyzer, and an EMI receiver to explore one man’s claims of having received an alien transceiver implant: www.ieti.org/news/testing.htm

“DAQMASTER”...The Name Says It All!

Our legendary family of data acquisition products has a new member..the **MW100**.

Our DAQ solutions now cover PC Based or Stand-alone applications, extreme environmental conditions plus you get our legendary signal conditioning and isolation.

	New MW100	MX100
Power Option	AC or DC	AC
Operating Temperature	-20°C to 60°C	0°C to 50°C
Communication Method	Ethernet, Modbus RS232 or RS422A/485	Ethernet
Input Types	Thermocouples, RTDs, Voltage, Strain, Discrete, Resistance	
Total Number of Measurement Channels	Up to 360	Up to 1200
Max Sample Speed	100 samples/sec.	
File (Secure) Backup	To Compact Flash Card	
Control/Monitoring Software	Java Based Web Browser	PC Software
Standalone Operation	Standalone or PC Based	PC Based

To discover more about Yokogawa's Data Acquisition Products,
please visit promo.us.yokogawa.com and
enter key code **AD8510**.

Power Analyzers ◆ Data Acquisition ◆ Digital Oscilloscopes

800-447-9656

yokogawa.com/tm

YOKOGAWA ◆

Omron Electronics achieves record growth, adds partners

Omron Electronics has announced record industrial-automation sales growth for its fiscal year ending March 31, 2005, resulting from a reorganization, product innovation, and focus on key markets, including machine-vision technologies tailored to applications areas ranging from food and beverages to semiconductors. A just-announced partner program that bundles Omron technologies with nine other automation companies' offerings are among ways the company plans to double its North American revenue within two years, according to Craig Bauer, president and COO of Omron Electronics, in comments during a two-day media event held at the company's Schaumburg, IL, headquarters June 29-30.

During the event, Omron partners demonstrated their offerings, and Omron introduced new products, including the \$5840 F210-ETN Ethernet vision-sensor controller. The F210 has onboard storage for compressed inspection images, which can be streamed via Ethernet to a remote PC or laptop for analysis and long-term storage without interfering with ongoing production output. The controller features parallel processors for measurement and communication functions, enabling continued inspection without interruption while processing and sending data. Access from a remote location using Omron's Vision Composer Net software lets users start or stop sensing and set or change scan parameters without the need to directly access onboard controls. www.omron.com/oei.

Infrared tool measures wafers in one pass

To help the semiconductor industry measure 300-mm wafers, researchers at the National Institute of Standards and Technology (NIST) have developed an infrared instrument that measures differences in thickness across a 300-mm wafer. The researchers hope the tool will eventually allow them to establish a new calibration service for "master wafers" used in the industry to measure wafer thickness.

The Improved Infrared Interferometer (IR³) uses intersecting waves of light to create interference patterns, which in turn can be used as a ruler to measure nanoscale dimensions. While most interferometers use red laser light, the IR³ uses infrared laser light. The longer wavelengths of infrared light pass through a silicon wafer, allowing the IR³ to illuminate both the top and bottom of a wafer and produce a detailed spatial map of differences in thickness in one pass. Changes in color within the spatial map represent changes in wafer thickness.

The NIST researchers make precision measurements of the wafer's index of refraction—the amount that light is "bent" as it passes through the silicon—as a critical step in correctly interpreting


the interference patterns. Increased precision in the refractive index measurement will be necessary before absolute measurements of thickness rather than

relative differences will be possible with the new instrument.

The NIST researchers were expecting to present their findings at the

RoHS-compliant SMT test points

Featuring a loop design to facilitate the connection of test probes to PCBs, the TP-107 series of low-profile, surface-mount printed-circuit board test points are fully compliant with the European Union directive "Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS). Their proprietary forming process, which consists of forming the flat wire design in a spiral wrap at the mounting base, effectively doubles the surface area of the mounting base to enable a PCB solder

connection that can withstand 18 lbs of force. A loop design provides a secure connection for miniature spring-loaded clips, probes, and hooks.

The test points offer a 0.090-in. (2.29 mm) profile. Specifications include a 2-A current rating and a -55°C to +125°C operating temperature. The parts feature a matte tin over nickel finish and are manufactured using a 0.015x0.040-in. phosphor bronze, spring-tempered, flat-wire alloy.

Designed for automatic insertion by industry-standard pick-and-place equipment and reflow soldering, the test points are supplied on 12-mm-wide, 4-mm-pitch, conductive polycarbonate tape. The units may be ordered on either 7-in., 1000-piece reels or 13-in., 5000-piece reels.

Price: \$0.078 each in quantities of 1000. COMPONENTSCORP.COM/DETAILS/TP107.HTML.

EDITORS' CHOICE

More Functionality Than Three Smart Cameras

National Instruments Compact Vision System offers more processing power, camera options, and I/O for your inspection needs.

Traditional Smart Camera		
Configurable Software	Vision Builder for Automated Inspection	Available
Programmable Software	LabVIEW Real-Time	Not Available
Typical Processor Performance	883 MIPS*	60-360 MIPS*
Digital I/O Channels	29	2-20
Cameras	up to 3	1
Resolution	up to 1300x1030	640x480
Frame Rate	up to 100 fps	30 fps
Memory	128 MB	16-64 MB
Mix Color and Monochrome Inspection	yes	no
Operating Temperature	0 to 55 °C	0 to 45 °C
Base Price	\$2,995	\$3,295

*MIPS: Million Instructions Per Second

ni.com/info

Request a brochure and evaluation software today. Visit ni.com/info and enter **tgb2g**.

NATIONAL INSTRUMENTS™

(888) 280-5761

Fax: (512) 683-9300 • info@ni.com

© 2003-2004 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.

American Society for Precision Engineering (ASPE) Summer Topical Meeting on Precision Interferometric Metrology in late July. www.nist.gov.

Agilent, Asylum to collaborate on nanotechnology measurements

Agilent Technologies recently announced that it has made an equity investment in Asylum Research (Santa Barbara, CA) and that its Nanotechnology Measurements Division (NMD) will collaborate with Asylum on technologies for use in nanotechnology measurements. Asylum Research is a manufacturer of atomic force microscopes (AFMs), which are used to measure the shape and properties of materials at the nanometer scale.

The agreement will enable Agilent to develop new features for AFMs as well as gain more knowledge about AFM customer needs. "The joint development agreement underscores our commitment to new technologies and markets," said Bob Burns, VP and GM of

CALENDAR

EOS/ESD Symposium, September 11-16, Anaheim, CA. Sponsored by ESD Association. www.esda.org.

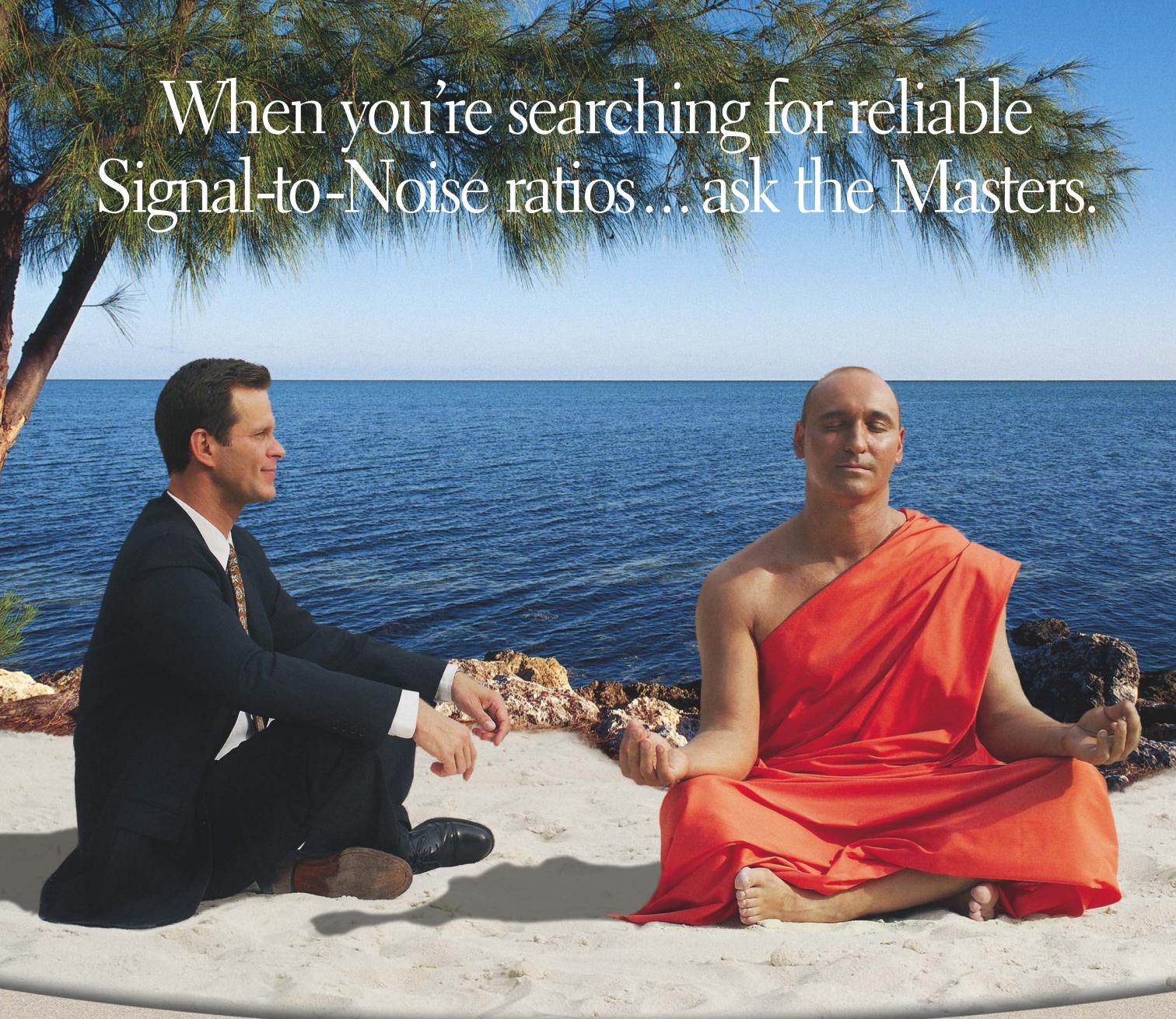
Autotestcon, September 26-29, Orlando, FL. Sponsored by IEEE. www.autotestcon.com.

International Robots & Vision Show, September 27-29, Rosemont, IL. Sponsored by Automated Imaging Association and Robotic Industries Association. www.machinevisiononline.org.

To learn about other conferences, courses, and calls for papers, visit www.tmworld.com/events.

Agilent's NMD. "The AFM market is a significant portion of the \$1 billion market for nanotechnology measurement tools, with the segment growing at close to 20 percent a year." www.agilent.com.

Fusion EX quadruples CX capacity


LTX's 80-slot Fusion EX test system offers four times as many instrument channels as the vendor's Fusion CX. The Fusion EX's 80 universal instrument slots accommodate existing Fusion platform instruments, which offer a limited number of instrument channels per card to provide fine instrument-channel granularity to allow incremental enhancements in capabilities. The EX provides full functional test capabilities and features the built-in support necessary for structural test, including digital performance up to 200 MHz (including embedded-memory test and time-measurement-per-pin capabilities). A Serdes test option operates to 12 Gbps. The Fusion EX also offers DFT support through independent scan-per-pin capability, and it provides a seamless interface to third-party BIST tools with fully integrated diagnostic support.

In addition, Fusion EX uses the same mixed-signal instrument set as the Fusion CX and Fusion DX configurations, including multiple synthesizers and digitizers and a full suite of DC and power test options. The EX also provides program compatibility through LTX's enVision device-oriented programming environment, which provides debug tools, encapsulation of test objects to support reuse of test intellectual property, and transparent multisite capabilities.

Price for typical configurations: \$500,000 to \$800,000. **LTX**, WWW.LTX.COM.

EDITORS' CHOICE

When you're searching for reliable Signal-to-Noise ratios... ask the Masters.

Performance that takes you to a higher place.

At Noise Com we're always hard at work creating state-of-the-art noise solutions to give you the repeatable measurements you're looking for. For example, our UFX-EbNo Series carrier-to-noise generators are known for their use of the accurate substitution calibration method. Now we've "raised the bar," again. Utilizing true RMS power measurement technology developed by Boonton Electronics,

the new EbNo Series delivers performance rarely contemplated—up to 40 GHz!

Put us to the test today!

There's no need to go to the ends of the earth to find the ultimate truth in noise testing equipment. When you need answers, ask the Masters of Noise™—Noise Com. For more information about our UFX-EbNo Series carrier-to-noise generators, please call us at 201-261-8797. For your C/N application notes, visit www.noisecom.com/C/N.

NOISE/COM

A WIRELESS TELECOM GROUP COMPANY

Keep an eye on it.

The R&S®FSL Spectrum Analyzer: to see it is to want it.

There are many good reasons to keep an eye on the new R&S®FSL. For one thing, it's very transportable – at 7 kg (under 16 lbs), compact, and with battery operation, it can quickly turn up in places you might not expect. For another thing, you won't be the only one who wants to use it. After all, what analyzer in its class gives you an I/Q-demodulation bandwidth of 20 MHz? Or the functions of a high-end box at an affordable price? Or a measurement uncertainty of under 0.5 dB? And looks this good doing it? None but the R&S®FSL. For more reasons to lock yours down, look online and in the next column.

- ◆ 9 kHz to 3 GHz or 6 GHz, with or without tracking generator
- ◆ Best performance in its class: DANL –152 dBm, IP3 typ. +15 dBm, phase noise typ. –103 dBc
- ◆ Extensive measurement routines: TOI, OBW, time domain power, channel/adjacent channel power
- ◆ LAN interface and USB host adapter
- ◆ Unique plug-in system: all hardware options user-installable without opening the housing

There's only one vital accessory for your R&S®FSL that we don't carry. You'll have to visit the hardware store for that!

Software complements instruments at microwave show

>>> The International Microwave Symposium, June 12–17, Long Beach, CA, www.ims2005.org.

Anritsu (www.us.anritsu.com) presented Version 2.0 of the company's MS2781A Signature signal analyzer, which operates up to 30 times faster than Version 1, according to the company. It also debuted its new UMTS Master, enhanced-data-rate (EDR) test software for its MT8850A and MT8852A Bluetooth test sets, and three CDMA2000 1xEV-DO measurement options (RF, demodulation, and over-the-air) for its Cell Master MT8212B handheld analyzer. **Boonton Electronics** (www.boonton.com) introduced its Model 4500 peak power analyzer, which can capture, display, and analyze RF power information in both the time and statistical domains.

Agilent Technologies (www.agilent.com) demonstrated its N6031A arbitrary waveform generator, which simultaneously delivers 1.25 Gsamples/s and 10 bits of vertical resolution. The company also introduced a 14-bit, 40-MHz-bandwidth digitizer for its PSA Series spectrum analyzers, announced extended frequency ranges on its 80-MHz-bandwidth digitizers, and introduced a 64-bit version of its Momentum 3-D planar electromagnetic modeling software.

The ZVT8 eight-port vector network analyzer supports multiport and balanced-device measurements from 300 kHz to 8 GHz.

Courtesy of Rohde & Schwarz.

Aeroflex (www.aeroflex.com) announced extensions to its phase-noise offerings—including the low-cost (\$27,500) Model PN8000 tester and a new downconverter. The company also announced enhancements to its synthesizer lineup, reporting that the enhanced 2500 series frequency synthesizers are faster, cleaner, and smaller than their predecessor, the FS5000. **Rohde & Schwarz** (www.rohde-schwarz.com) introduced its ZVT8 eight-port vector network analyzer, its FSL 15.5-lb 6-GHz portable spectrum analyzer, and its 6-GHz SMJ100A vector signal generator. **T&MW**

Debug group debuts at DAC

>>> Design Automation Conference, June 11–18, Anaheim, CA, www.dac.com.

During this year's DAC, representatives of the design, manufacturing-test, and silicon-debug supply chain announced the formation of the **Design for Debug (DFD) Consortium** (www.designfordebug.org). The goal of the consortium is to address tool-interoperability and methodology issues. Charter members include Corelis, DAFCA, First Silicon Solutions (FS2), Intellitech, JTAG Technologies, Novas Software, and consultant Fidel Muradali.


Magma Design Automation (www.magma-da.com) announced limited availability of its new Blast Yield design-for-manufacturability (DFM) and design-for-yield (DFY) tool for IC designs at 90 nm and below. **Cadence Design Systems** (www.cadence.com) outlined its strategy for what it calls enterprise verification process automation (VPA), which addresses the link between design and verification and offers users an optimal blend of e, SystemVerilog, and SystemC languages. The strategy mirrors market-tested

approaches established by leading enterprise software companies such as SAP and Oracle.

Genesys Testware (www.genesystest.com) highlighted its new ArraytestMaker tool for embedded test and repair of memory. **Tharas Systems** (www.tharas.com) demonstrated its new Hammer S-Class and M-Class verification appliances, which employ a multicore custom processor designed by the company. It also highlighted its new Virtual Connect, which it describes as an RTL-accurate emulation capability that works with the Hammer systems to perform hardware/software coverage for embedded systems.

Atrenta (www.atrenta.com) introduced its 1Team Embedded C and C++ analysis environment for embedded software. **Carbon Design Systems** (www.carbondesignsystems.com) introduced its VSP (for virtual system prototyping), which enables users to assemble a system prototype and functionally validate it at the desktop. **T&MW**

Get on the Vanguard Express

PCI Express Protocol and Link Analyzer

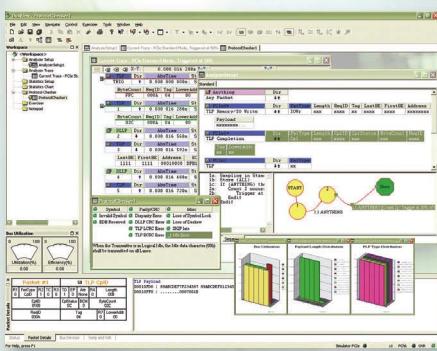
Processing and FPGA

- Input and Output

- Data Recording

- Bus Analyzers

Powerful


- Supports x1 to x8 PCI Express
- Concurrent operation of all functions
- Real-Time Statistics and Protocol Checker

Flexible

- PCI Express and XMC form factors supported using adapters
- Ethernet or USB host connection
- Same GUI as PCI and VME analyzers

Innovative

- State-of-the-art sequencer
- Powerful Trace viewer allows multiple views

For more information, please visit
www.vmetro.com or call (281) 584 0728

VMETRO
innovation deployed

EMC awareness has risen

Over the last 10 years, EMC awareness among electrical engineers has risen. The EU's EMC Directive, which forces manufacturers to comply with numerous standards, has driven engineers to design for EMC.

“Engineers are now comfortable with the EMC Directive,” said Roland Gubisch, engineering manager for EMC and telecom at Intertek ETL Semko (Boxborough, MA). As a result, he sees few products failing EMC compliance tests.

Designers now accept EMC as part of their job. Ken Wyatt, senior EMC engineer at Agilent Technologies (Colorado Springs, CO), makes it clear to his company’s designers that it’s their job to design for compliance, not his. “I assist designers by providing training, running tests, and analyzing their designs,” noted Wyatt. “At first, we brought in well-known consultants Henry Ott, Howard Johnson, and Doug Smith to train our engineers in EMC theory, PCB design, and signal integrity.” Wyatt now con-

ducts in-house seminars, both in person and online.

IBM has taken a similar approach. “We recognized a need to design for EMC, so we hired Dr. Bruce Archambault to train our engineers,” said Len Powell, program director for design, support, test, and validation at IBM’s Raleigh, NC, facility. “We also developed tools to model EMC in our designs. The modeling tools solve Maxwell’s Equations and provide ‘what if’ scenarios.” Archambault conducts classes in EMC design and meets with engineers at least once a year to keep them current on the latest design techniques.

Don Sweeney, president of test lab D.L.S. Electronic Systems (Wheeling, IL) also sees an overall rise in EMC awareness, but with two qualifica-

tions. Although he rarely sees engineers who don’t know that designing for compliance is a requirement, Sweeney has noted that some engineers don’t know the repercussions of not complying with EMC standards. For example, a lack of compliance means that you can’t sell your product in Europe. He also finds that engineers at small companies are less EMC aware than those at large companies. “Large companies have the resources to train their engineers, but small companies don’t,” he said.

Engineers regularly attend EMC training sessions given by consultants and test labs. Courtesy of D.L.S. Electronic Systems.

Program measurements with .NET

With the new DTx-EZ tool, you now can program Data Translation’s data-acquisition hardware through Microsoft’s .NET framework. The company has added .NET-compatible “wrappers” around its drivers. DTx-EZ is available with the company’s data-acquisition hardware and as a free download. www.datatranslation.com.

Online videos cover product safety

With online instructional videos, you can learn how to properly connect test leads to the Hypot III line of hipot testers and Hyamp III ground-bond testers from Associated Research. The seven videos demonstrate connection to a DUT through test leads and through an adapter box for line-powered devices. www.asresearch.com/video.

Free power analyzer upgrade

Fluke has a firmware upgrade for its 430 series of power analyzers. Version 1.10 speeds menu navigation through new shortcuts, and it also improves the warning message system. You can toggle between phase-to-neutral and phase-to-phase readings. www.fluke.com/430upgrade.

An engineer’s enthusiasm for learning about EMC is a function of his or her age. “Young engineers are eager to learn and to use our simulation tools,” said Archambault. “Older engineers are more set in their ways and are reluctant to change.”

Wyatt added, “Most of the reluctant engineers have retired, leaving us with a younger, more receptive group.”

Engineers are now particularly good at designing for EMC emissions, but some still need help with immunity. EMC consultant Doug Smith said “I often have to help engineers with setting up immunity tests. There is little correlation between passing that test and having a product work in the field.” **T&MW**

New! Powerful In-System Programming in a Compact Package

Are you challenged by a need for production ISP programming? Tested by device serialization? Pressured for greater speed and throughput? Relax. Now there's ImageWriter.

ImageWriter is a fast, compact, in-system programmer robust enough for fast paced manufacturing lines. It mounts neatly into any test fixture, ready to execute programming on command from the tester, LabVIEW™ or other process control application.

ImageWriter provides high-speed programming of flash microcontrollers and serially programmable memory devices. Compatible with ICT, MDA, and functional test systems from major manufacturers such as Agilent, Teradyne, or any test rack or fixture in your line. Flexible enough to handle single boards or panels, boosting your productivity.

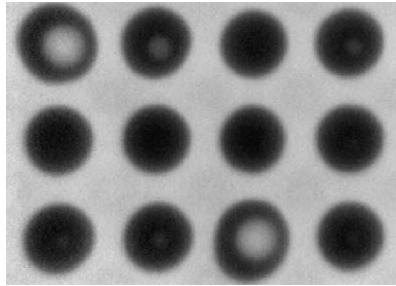
Meet the ISP challenge with ImageWriter. Good things come in small packages.

A new in-system programming solution from Data I/O, the leader in device programming.

Read our application note on "Tips for In-System Programming." You'll find it at www.dataio.com/isp

Delivering the World's Best Ideas in Silicon

All company and product names mentioned may be trademarks or registered trademarks of their respective holders and are used for identification purposes only.


www.dataio.com
800.426.1045

Moving beyond boundary scan and inspection

The most evident twin changes in the electronics industry in the past 20 years have been the increase of circuit functionality and the ever-declining access to board nodes to ensure that a circuit works.

Test engineers point to design-for-testability as one solution, but design engineers have never met that concept with enthusiasm. The same can be said of built-in self-test, which rarely covers more than about a third of possible failures. At one point, we thought we

This x-ray "slice" of the balls from a ball-grid array clearly shows solder voids. Courtesy of Agilent Technologies.

had the ultimate solution in boundary scan, but that, too, has been called into question—manufacturers are facing the limitations of boundary scan to verify a board's function as well as the likelihood that boundary scan makes boards more susceptible to security breaches.

So what do we do? How do we ensure proper circuit operation? Inspection has addressed some of the issues, like voids in ball-grid arrays, but it can find only a subset of possible faults. Hot mockup is time-consuming and extremely labor-intensive, and its results tend to be more qualitative than quantitative; also, mockup systems degrade as they age (called "hot mockup system wearout") until you can't tell if a failure comes from the system or the board under test. How do you schedule calibration/maintenance/replacement for hundreds of systems? On system failure? On a rotating basis? All at once?

Both OEMs and contract manufacturers have to get away from the no-

tion that a single test strategy can address every situation. Contract manufacturers who truly want to be ready to accept any task that walks in the door must remain flexible enough to devise unique strategies specifically optimized for each situation rather than rely on a menu of predetermined choices. Those who specialize in certain kinds of boards will find the path somewhat less complicated—and less crowded.

Some new(ish) ideas are emerging. Some board-test manufacturers are turning to a variation of in-circuit emulation to address some of the prob-

lems. Today's device designers have to incorporate test routines in their silicon because it is the only way to determine if the device works. Ireland-based International Test Technologies has adapted emulation techniques to microprocessor-based boards by taking advantage of those device-level test routines, knitting them together the way in-circuit test programs were assembled years ago. Other companies are adopting similar approaches. Although not appropriate for every board category, on the subset of boards for which they work, these techniques are quite successful.

Mostly we need to take the action that experts recommend for all innovation—we must think outside the box. Because as the box grows ever smaller, much less of what we face every day will fit inside it. T&MW

Flying prober offers positioning resolution of 1.25 mm

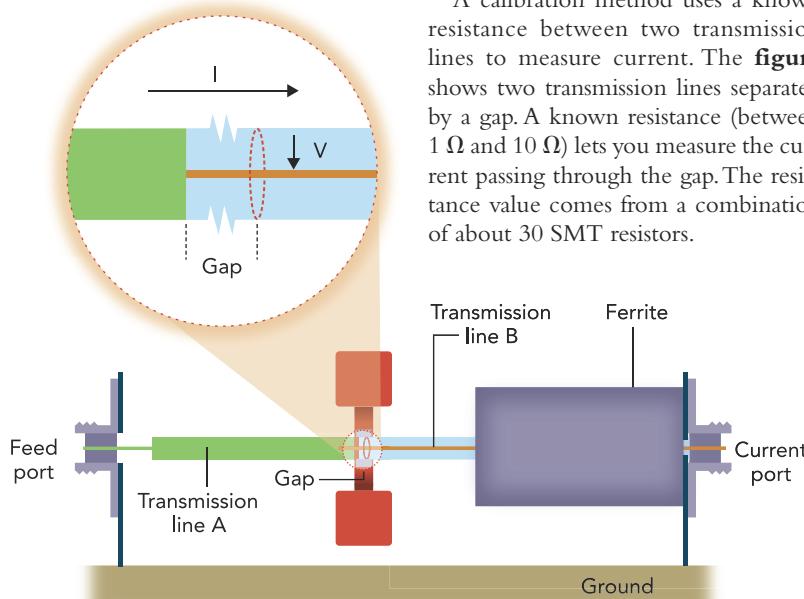
The Takaya APT-9411 flying prober from Itochu Europe improves both speed and accuracy over its predecessors. The tester provides x and y positioning resolution of 1.25 mm for testing ever-smaller components on densely populated boards. It offers four moving probes, plus two IC opens on the top side. A camera comes standard to provide visual alignment and inspection. A flying height of 40 mm accommodates a wide variety of board types. www.itochu-takaya.co.uk.

Ronetix announces JTAG emulator

Offering a high-speed, low-cost JTAG emulator for ARM7 and ARM9-based microcontrollers, the Powerful Embedded Ethernet Interface (PEEDI) from Ronetix supports native GNU gdb (remote target via Ethernet). It provides a download speed of more than 400 kbytes/s and a 5-kHz to 33-MHz JTAG clock using 25-cm standard cable. Its telnet interface provides simple debugging and target flash programming. The built-in flash programmer supports more than 750 flash devices and can be used as a stand-alone unit. www.ronetix.at.

Study makes the case for quality

The American Society for Quality has released a case study called *The Economic Case for Quality* to demonstrate the impact of quality on a company's bottom line. The study came in response to requests from members who experienced difficulty in conveying the importance of quality as a business-management tool to upper-level executives. www.asq.org.


EMC

Calibrate current clamps

Current clamps let you perform emissions and immunity measurements in signal and power cables. Unfortunately, clamps absorb some energy from the circuit under test in order to make a measurement. Thus, they produce mea-

surement errors. By applying a known current to a test fixture, though, you can calibrate your equipment and characterize the current clamp. You can also analyze the effect of placing the clamp on the cable.

A calibration method uses a known resistance between two transmission lines to measure current. The **figure** shows two transmission lines separated by a gap. A known resistance (between 1Ω and 10Ω) lets you measure the current passing through the gap. The resistance value comes from a combination of about 30 SMT resistors.

A series resistor across a gap between transmission lines provides a known resistance from which you can measure current and calibrate a current clamp.

Courtesy of IEEE.

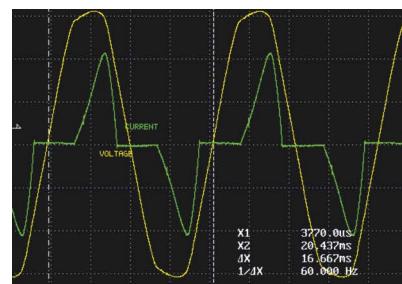
A feed port connects a network analyzer to a metallic rod, which provides a low-impedance path to the gap resistors. The resistors then connect to a coax cable, which carries the current to a 50Ω termination. The network analyzer measures the voltage at the fixture's exit port. Using S-parameter analysis, you can calculate the current that passes through the gap resistors.

By placing a current clamp over the gap resistors, you can measure the clamp's output voltage. Current-clamp manufacturers provide the clamp's transfer impedance, so you can calculate the current measured by the current clamp. Then, you can compare it to the current in the gap resistors, measured by the network analyzer, and calibrate the current clamp.

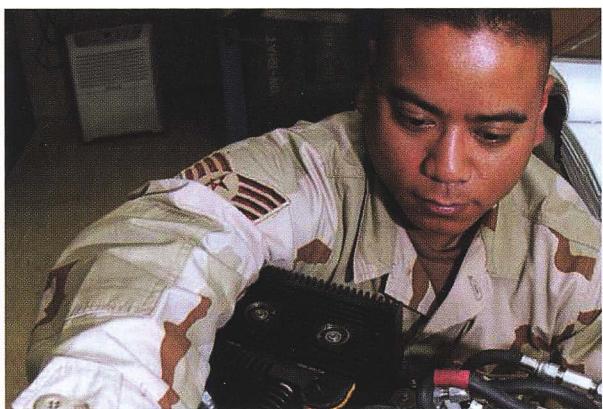
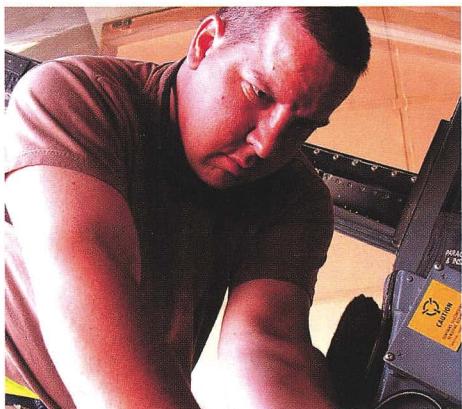
To learn about the theory, construction details, and test results of this method, download "A New Test Setup and Method for the Calibration of Current Clamps," by David Pommerenke of the University of Missouri-Rolla, Ramachandran Chundru of Texas Instruments, and Sunitha Chandra of Nvidia, from web.umr.edu/~davidjp/publications.html.

Martin Rowe, Senior Technical Editor

ARCHIVED WEBCAST


Power measurement and analysis

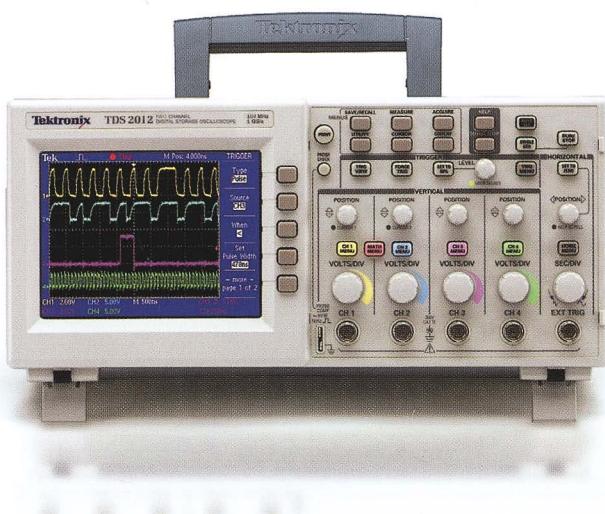
Whether you are dealing with a three-phase high-power industrial-distribution system or an Energy Star-compliant computer in standby mode, you're likely to have to make power measurements. Instruments that can make such measurements range from current sensors and wattmeters to precision power analyzers as well as digital oscilloscopes equipped with power-analysis capabilities.



In the Webcast, "Power Measurement and Analysis," produced by *Test & Measurement World*, sponsored by Yokogawa's Test and Measurement Division,

and originally broadcast May 24, Bill Gatheridge, Yokogawa's product manager for power-measuring instruments, describes how to apply those instruments to make single-phase and three-phase measurements in the presence of inductive and capacitive loads powered by sinusoidal or pulse-width-modulated sources.

Gatheridge begins with the basics, covering Ohm's law as it relates to AC power measurements. He reviews the Blondel transformation, which states that to measure power, you need one

You can't derive displacement power factor from a scope display when dealing with nonsinusoidal signals like this green current waveform; therefore, you'll need to calculate true power factor by dividing measured power in watts by measured volt-amperes. Courtesy of Yokogawa.


EVERY TEST MAKES AMERICA STRONGER

 testmart®
WHERE AMERICA'S PROUDEST
BUY TEST EQUIPMENT

**PULL &
SAVE**

Now on
GSA

SAVE Digital Oscilloscope

NEW TDS2012

- 100 MHz Bandwidth
- 1 Giga Samples per Second
- 2 Channels
- LCD Color Display

Tektronix®

LOWEST CONTRACT PRICES FOR GOVERNMENT AGENCIES AND FEDERAL CONTRACTORS

TDS1000 Series
NEW Digital Oscilloscope
TDS1002 60MHz 1GS/s 2
TDS1012 100MHz 1GS/s 2

TDS3000 Series
NEW Digital Oscilloscope
TDS3012B 100MHz 1.25GS/s 2
TDS3014B 100MHz 1.25GS/s 4
TDS3024B 200MHz 2.5GS/s 4
TDS3052B 500MHz 5GS/s 2
TDS3054B 500MHz 5GS/s 4

SPECIAL SALE PRICES

TDS2000 Series
NEW Digital Oscilloscope
TDS2012 100MHz 1GS/s 2
TDS2014 100MHz 1GS/s 4
TDS2022 200MHz 2GS/s 2
TDS2024 200MHz 2GS/s 4

TDS5000 Series
NEW Digital Oscilloscope
TDS5052B 500MHz 5GS/s 2
TDS5054B 500MHz 5GS/s 4
TDS5104B 1GHz 5GS/s 4

CALL 888-665-2765 OR GO TO WWW.USA.TESTMART.COM

 testmart®

 GSA Schedule

 SBA
Small business credit

 NAVSUP
NAVAL SUPPLY SYSTEMS COMMAND
Naval Inventory Control Point

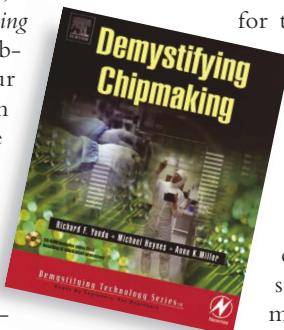
wattmeter fewer than the number of wires in your system: one wattmeter for a two-wire single-phase system, two wattmeters for a three-wire single-phase system or three-wire three-phase system, or three wattmeters for a four-wire three-phase system.

Specific applications covered include analysis of low-power systems, switching power supplies, and inverters and pulse-width-modulated drives. Gathridge also covers power factor, which comes into play with inductive loads (such as AC motors), where current lags

voltage, as well as with capacitive loads (such as fluorescent lighting), where current leads voltage. He describes the difference between displacement power factor (the cosine of the phase shift between pure voltage and current sine waves) and true power factor (power in watts divided by total volt-amperes). He concludes by describing a three-wattmeter method for measuring power factor in three-phase systems.

An archive of the Webcast is available at www.tmworld.com/webcasts.

Rick Nelson, Chief Editor


BOOK REVIEW

A bird's eye view of IC fabrication

Demystifying Chipmaking, by Richard F. Yanda, Michael Heynes, and Anne K. Miller, Newnes (www.newnespress.com), 2005. 256 pages. \$49.95.

Semiconductors are pervasive, but detailed knowledge about how they are fabricated is not—except among the manufacturing and process engineers who produce them. If you're designing and testing boards, subsystems, or complete products, *Demystifying Chipmaking* won't have you fabricating Pentiums in your garage, but it will provide an interesting overview of the IC fabrication process while familiarizing you with the terminology.

Topics range from contamination control to the dual-damascene metal-interconnect process, which has come a long way from the Middle Ages technique for which it's named. The book introduces timely topics, covering low-k dielectrics and why they are important (to improve chip speeds by minimizing parasitic capacitance), and it describes the pellicles that prevent reticle contamination from causing chip defects (by keeping contaminating particles sufficiently far from the reticle that they are out of focus and consequently not printed on a target wafer's surface).

Test-related topics include a brief description on the use of statistical process control to employ test and inspection results to maintain yields. A chapter on test and assembly describes parametric tests on transistors embedded in a wafer

for that purpose as well as functional tests at wafer probe and final package test, but it omits any mention of scan tests or other design-for-test (DFT) approaches. In a chapter on design, the book cites several groups for chipmaking credit—layout, logic, applications, architectural, and technology-transfer engineers—but it neglects to mention DFT engineers.

The book comes with a CD-ROM that provides video of various chipmaking stages. For your colleagues who aren't engineers, there's an appendix that provides the basics of the chemistry and physics behind semiconductor fabrication and behavior. (Disclosure: The book's publisher is owned by *Test & Measurement World*'s parent company.)

Rick Nelson, Chief Editor

Measurement Computing's Ethernet-based DAQ

Experience the Measurement Advantage™

- Best prices
- Fastest to measurement
- Reliable products

SoftWIRE™ **TracerDAQ**
Software included

E-1616

\$899

Best Price

No other Ethernet-based device gives you:

- 16 analog input channels, 16-bit res
- Simultaneous input sampling
- Up to 150 kS/s total throughput
- 8 DIO bits
- All for \$899

Fastest time to measurement

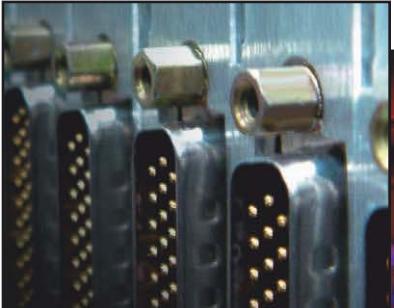
Start taking measurements in minutes with MCC's DAQ software suite:

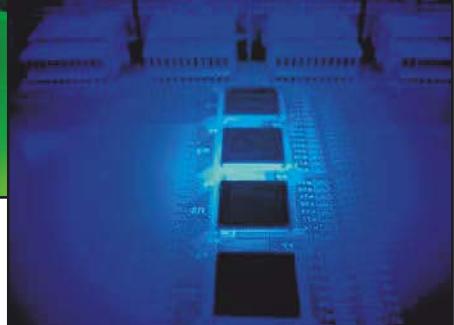
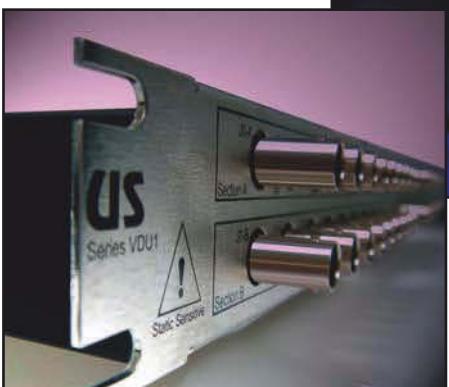
- TracerDAQ — "Out-of-the-box" strip chart, data logger, scope application.
- SoftWIRE — Create applications quickly with graphical programming.
- Universal Library — High level I/O functions reduce development time.

Product reliability

Proven by best warranties in the industry:

- Standard lifetime warranty
- Standard Harsh Environment Warranty®


for more information, visit
www.mccdaq.com



MEASUREMENT COMPUTING
www.mccdaq.com

(508) 946-5100

Switching?

Includes control via
TCP/IP

**Spanning
DC-40GHz**

Performance....it's all about the details.

We know switching since that's our business, our only business. We learn the specific details about your switching requirement, then match one of our thousands of standard products to fit your exact need! For nearly 15 years, we have been manufacturing state-of-the-art automated switching systems for use in the ATE, communication, telemetry and broadcast industries. We provide connectivity solutions from 1x2 to 1024x1024, and larger if you need it. Solid-state, digital, fiber-optic and relay technologies are leveraged for optimum and cost effective solutions. It's time to upgrade your manual patch panels or old crosspoint switch to a new high performance automated switching solution. Give us a call for your free catalog and tell us about your requirement. **We're listening.**

**Solid-State
Digital
Fiber-Optic
Relay-Based**

All technologies are leveraged for optimum and cost effective solutions.

**Coaxial
2-Wire
Triaxial
Fiber**

Single-ended, differential, balanced, fiber-optic, 1xN or MxN types of switching.

**Ethernet
GPIB
Serial
VXI/VME/LXI**

All popular control types are available. Redundant CPU's and control software.

Advisory Member
LXI Consortium

Audio - Video - Digital - RF - IF - ATE - Telemetry - Cellular - Microwave

US **Universal
Switching
Corporation**

State-of-the-Art Switching Solutions

7145 Woodley Avenue
Van Nuys, CA 91406 USA

Phn +1 818-785-0200
Fax +1 818-785-0680
Email sales@uswi.com
Web www.uswi.com

PROJECT PROFILE

RF TEST

Four-port calibrated structures

DEVICE UNDER TEST

Microwave amplifiers, filters, transmitters, receivers, and radar chip sets that operate at frequencies to 40 GHz. These balanced differential devices are made on silicon or gallium arsenide substrates and are on wafer during tests.

THE CHALLENGE

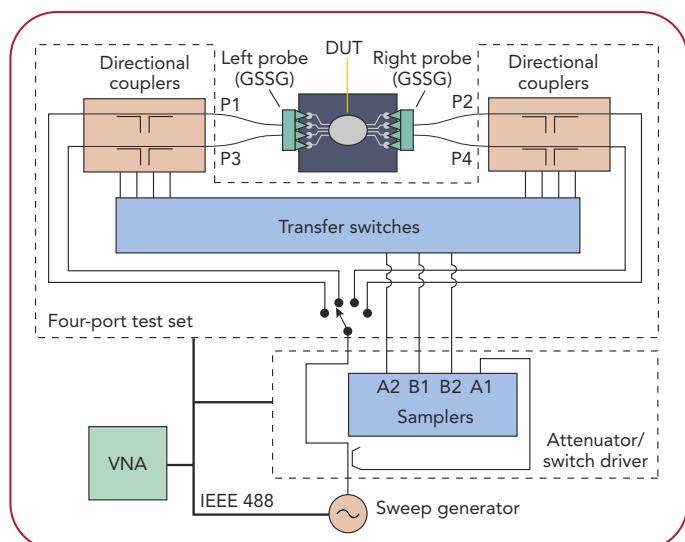
Develop a test method and the equipment to calculate S-parameters for four-port differential microwave devices based on multimode techniques. Calibrate a test station that consists of a vector network analyzer at frequencies to 40 GHz. Overcome problems found in commercial calibration standards.

THE TOOLS

- Agilent Technologies: vector network analyzer, attenuator/switch driver. www.tm.agilent.com.
- Cascade Microtech: automatic wafer prober and ground-signal-signal-ground (GSSG) RF wafer probes. www.cascademicrotech.com.
- Electroglas: automatic wafer prober. www.electroglas.com.
- M/A-Com: custom RF calibration structures. www.macom.com.
- The Mathworks: technical computing software. www.mathworks.com.
- Pico Probe: GSSG RF wafer probes. www.picoprobe.com.

PROJECT DESCRIPTION

Before engineers at M/A-Com (Lowell, MA) can characterize balanced, 24-GHz ICs with a vector network analyzer (VNA), they need to calibrate their test system. To compensate for errors introduced by cables, switches, connectors, and wafer probes, the engineers measure the responses of calibration standards and compensate for errors in software. After making the calibration using custom calibration standards and compensating for measurement errors, engineers repeat the measurements on the calibration standards to verify accuracy in the process.


"When we used commercially available calibration standards at frequencies above 10 GHz, we found that the magnitude of S_{21} would be greater than unity when we measured the calibration standards again," said principal engineer Alan Jenkins. "That's impossible, because the calibration standards are passive structures." To solve the problem, M/A-Com developed its own on-wafer calibration standards.

The standards are a uniform set of microwave transmission lines. One is a planar "through" standard with effectively no delay. Two delay standards introduce known, fixed propagation delays to signals passing through them. A fourth, "reflect" standard is a specific open circuit between the structure's test pads. All structures use two signal traces surrounded by two ground traces, thus making four ports. This configuration lets engineers perform a four-port calibration with results consistent with two-port calibrations for balanced circuits. With four-port measurements, the common- and differential-mode S-parameters are available. (The online version of this story contains diagrams of the standards, www.tmworld.com/archives.)

To make the VNA into a four-port instrument, M/A-Com engineers added an attenuator/switch driver. They drilled through the

case and connected coax cables close to the instrument's input circuits. The coax cables connect to the attenuator/switch driver, which then connects to a patch panel. The VNA, attenuator/switch driver, and patch panel reside in an instrument rack located next to a wafer-probing station.

Jenkins, along with principal engineers Tekamul Buber, Noyan Kinayman, and others, developed a "multimode through-reflect-

Switches let a modified two-port VNA make four-port measurements.

line" calibration theory, dubbed MTRL. After making measurements on the calibration standards, they use custom software to calculate eigenvalues that they apply to DUT measurements. The software uses the eigenvalues to correct the DUT measurements to produce the final results.

LESSONS LEARNED

"We learned more about calibration methods than we thought we would," said Jenkins. "Finding a gain above 10 GHz for a through line was an eye opener." By using their own calibration standards, M/A-Com engineers were able to prove that the errors were caused by the commercially available calibration standard, not by the compensation algorithms they had developed. "The technique lets us separate common-mode gain from differential gain," added Kinayman.

Martin Rowe, Senior Technical Editor

CLOSE COOPERATION AMONG A GLOBAL ENGINEERING TEAM LED TO THE SUCCESS OF THE LIGHTSPEED VCT MEDICAL SCANNER.

LAWRENCE D. MALONEY, CONTRIBUTING EDITOR

WAUKESHA, WI—For doctors dealing with medical emergencies, the speed and accuracy of diagnostic equipment play crucial roles in a patient's chances for survival. Speed is measured in the precious seconds required to obtain high-resolution images of damaged hearts, shattered bones, or ruptured vessels, while accuracy hinges on the ability of sophisticated x-ray detectors to prevent artifacts that could lead to a misdiagnosis.

Now, thanks to the work of engineers at the sprawling GE Healthcare Technologies complex just west of Milwaukee, more doctors can tap what is being described as "the quintessential emergency room tool." Introduced in the first quarter of this year, the LightSpeed VCT (volume computed tomography) generates 3-D-quality images that are setting new standards for CT scanners.

In a single 0.35-s rotation, the VCT simultaneously acquires 64 slices of data, each 0.625 mm wide, for a total anatomical coverage of 40 mm. That's four times the coverage of GE's current LightSpeed Pro 16 scanner. As a result, the scanner can capture images of most organs in 1 s, the heart and coronary arteries in just 5 s, and the whole body in 10 s.

The speed and quality of these images have so impressed the medical community that many physicians see the LightSpeed VCT as an alternative to costly invasive procedures, such as angiograms (see "Patients: The real winners in 'slice wars,'" in the online version of this article at www.tmworld.com/archives). By early May, GE Healthcare had already installed 30 of the scanners, priced at about \$2 million each, with another 250 orders booked.

"This is the biggest order backlog for a CT scanner that we've ever had," said Scott Schubert, GE Healthcare's global product manager for CT. He added that the scanner's enhanced capabilities will lead to further expansion of CT procedures, already growing at a rate of more than 10% annually. Worldwide, patients undergo 100 million CT exams each year—with half of that number performed in the US alone.

Detector technology

From a testing standpoint, some of the biggest challenges presented by the LightSpeed VCT centered on its new detector system, called the V-Res. Along with the x-ray source, situated directly opposite it, the detector revolves around the patient within a donut-shaped gantry.

Jean Marc Delplanque, leader of the design-for-manufacturing team, noted that the manufacturing tests required for the VCT's detector boards were based on the needs of the product, not on the engineering team's organizational structure.

TESTING FOR

LIFE'S SAKE

The V-Res features a proprietary HighLight composite ceramic material in the scintillator, the component that converts the incoming x-ray to visible light. An adjacent photodiode detects the light, converts it to an electrical signal, and transmits it to the data-acquisition system. On the VCT, GE pioneered a back-lit diode, which routes the electrical signal from the rear of the diode. This permits a denser, more compact diode array and makes it possible to add more detector elements in future designs.

Engineers at GE's Schenectady, NY, R&D center also developed a new analog-to-digital converter (ADC) chip—the Volara—that was fabricated by Idaho-based AMI. Eight of these chips reside on a detector board that includes a heat sink and is about 20% smaller than that used in the previous-generation Pro 16, which has only two ADCs.

Previous detector designs also featured longer flexible circuits for interconnects, which plugged into card-rack backplanes. "Now, we are packaging the electronics in much tighter proximity to the photodiode and optoelectronics to minimize the capacitance and physical distance—and that translates into much lower electronic noise and higher signal isolation,"

explained Jeff Kautzer, manager of CT detector engineering. "We've moved from conventional card-rack, connector electronics to microelectronics that are closely aligned to the detector elements."

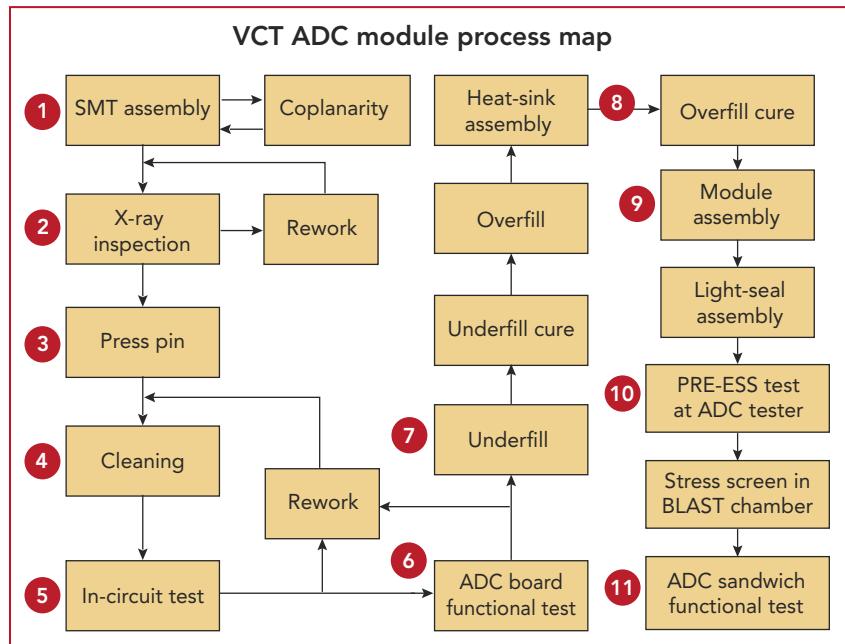
In the final assembly in the scanner's gantry, technicians place the ADC boards, sandwiched together in modules, in an arc-shaped mechanical card rack. An array of digital-interface (DIF) boards, which power and control the ADC boards, occupy another rack. A micropositioning system on the gantry aligns the x-ray input of the scintillator to a collimation system that defines the direction and dimensions of the x-ray beam. The entire assembly spins at 0.35 s per rotation, resulting in forces of 22 g on the detector boards.

Fast-paced design and test

Ensuring the quality of this network of boards on the V-Res detector demanded cooperation among members of a global engineering team. About 20% of the team was involved in building test fixtures, designing and performing tests, and writing software code for boundary-scan, in-circuit test (ICT), and custom testers, according to Jean Marc Delplanque, the engineer in charge of design for manufacture. His group mapped out the test

TIM EVANS

Jeff Kautzer, manager of CT detector engineering, explained that the GE team is relying more on x-ray inspection to handle the tighter electronics packaging on detector boards.


strategy for the detector boards and designed the process flow for board manufacture. They also built custom testers, both for GE's internal manufacturing and for outside suppliers.

Delplanque noted that the complexity of the VCT's electronics was four times that of the previous product, and the design and test teams wanted to boost the reliability compared to that of previous scanners with no increase in cycle time. "The important thing is that we designed our tests and manufacturing processes from the start based on the needs of the product—not on our organizational structure," he said.

With the VCT's design fixed by early 2003, the engineers responsible for the ADC and DIF boards found themselves testing prototype boards to weed out problems as early as possible, while at the same time ramping up the tests that would be needed for volume manufacturing. "I used to be a design engineer, so I know that getting early feedback from test is critical to getting the design right," commented David Sallis, component engineering and test manager at GE's Global Electronics Center (GEC), a sister facility in Milwaukee where the VCT's detector boards are manufactured.

Journey to reliability

A look at the test roadmap for the ADC boards demonstrates the company's commitment to provide as much critical feedback as possible. The journey begins at the surface-mount level, where GEC will soon introduce automated online inspection machines to assess solder-joint quality during the paste-printing process. To ensure the board electronics meet IPC Class 3 manufacturing standards, GE uses

The ADC board undergoes a test journey in manufacturing that begins with x-ray and automated inspection in the surface-mount stage and ends with a functional test of two ADC boards sandwiched together in a module. More tests await when the module is mated with other detector components.

What's In It For You?

Cost Doesn't Count If You Can't Get the Power.

AR amplifiers come with a one-of-a-kind benefit. It's called Super infinite VSWR tolerance.

Simply put, infinite VSWR tolerance means that AR amplifiers continue to deliver full, rated power to the load in any and all test circumstances. Even when the VSWR ratio is high. Even when other amps fold back or diminish output to protect circuitry.

Every AR watt promised and paid for is available when you test. Not so with the competition. In the end, you save money by buying AR quality, because you get more power for your dollar. Even our highest power amplifiers offer full output into ratios as high as 6.0:1.

Don't be fooled into buying a brand that costs less and delivers less. No competitor even comes close.

AR Worldwide Competitive Edge supply a multitude of unique RF solutions to some of the finest names worldwide. From leading automotive and communications giants to the military, AR Worldwide is there. Our limitless support network reaches the far corners of the world and most everything we sell is backed by our exclusive, "second-to-none, best-in-the-business", 3-year warranty.

To learn more, visit www.ar-worldwide.com or call us at 215.723.8181. AR Worldwide. We're there.

Visit Us At IEEE EMC 2005 Symposium
Booth #402 - 413, Navy Pier, Chicago, IL , August 8-12, 2005

ISO 9001:2000
Certified

Copyright© 2005 AR Worldwide. The orange stripe on AR Worldwide products is Reg. U.S. Pat. & Tm. Off.

Quality=Value

ar worldwide • rf/microwave instrumentation

USA 215-723-8181 or 800-933-8181 for an applications engineer

In Europe, call EMV-Munich: 89-614-1710 • London: 01908-566556 • Paris: 33-1-47-91-75-30 • Amsterdam: 31-172-423-000

ar
worldwide

"I can **SELL** my test equipment?"

Now you can.

- **Free listings**
- **Thousands of buyers**
- **Guaranteed payment**

selldirect.testmart.com

888-665-2765

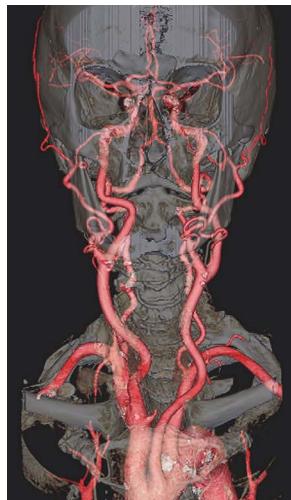
Sell Direct
powered by

MEDICAL TEST

Agilent's 5DX x-ray system to inspect solder joints for voiding and other defects.

"Because of the [VCT] system's high-density electronics, including micro-BGA packaging, we are using x-ray more and more in manufacturing," said detector manager Kautzer.

After the cleaning and washing stages, boards undergo in-circuit tests on an Agilent 3070 bed-of-nails system. Next, the engineers perform a functional test on the ADC board using a custom tester that accommodates eight boards. This test involves operating the ADCs at their expected frequency rate and under controlled temperature. The tester measures a dozen critical-to-quality parameters, including noise levels, leakage, offset, and integral and digital non-linearity.


Explained Delplanque, "This is a very important test because you are measuring parameters that you cannot measure effectively later on. Repairs also can be made much more easily at this stage, compared to later on in the process, when the boards are sandwiched into a module for another functional test."

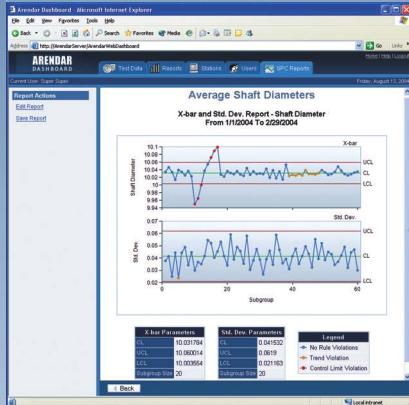
The GE engineers also perform extensive accelerated-life and stress-screening tests on the boards, both at the prototype and final manufacturing stages. For example, prototype boards were tested in Thermex-Thermatron ovens at temperatures ranging from -40°C to $+125^{\circ}\text{C}$ for 8 hrs. The normal operating temperature of the CT scanner is $+15^{\circ}\text{C}$ to $+45^{\circ}\text{C}$.

Following stress screening and another functional test, the ADC module faces still more tests when it is mated with the diode assembly and scintillator pack as a complete subsystem. At this stage, the engineers perform at least a dozen tests in a clean room, using a digital modular tester and a slave x-ray source. They monitor the conversion of x-rays to electronics and the optical interface between the scintillator and the photo diode. "Anywhere that you have energy conversion

going on calls for more elaborate and more difficult tests," explained Kautzer.

Next, the assembly goes to system manufacturing, where it is loaded onto a gantry equipped with an x-ray tube and a generator. The detector array is optically aligned with the collimation system, and the engineers can test dynamic images, instead of just the static images tested in the earlier digital module test. More tests follow on the entire CT machine in lead rooms at the Waukesha facility, including tests of the spatial and temporal resolution of the system.

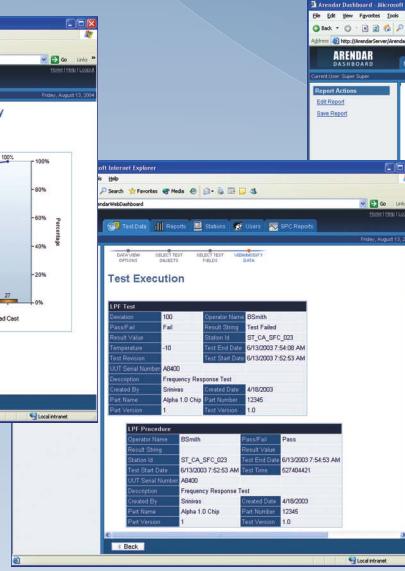
With its 64-channel capability, the LightSpeed VCT can produce high-resolution, 3-D images of most organs in 1 s, the heart in 5 s, and the entire body in 10 s.

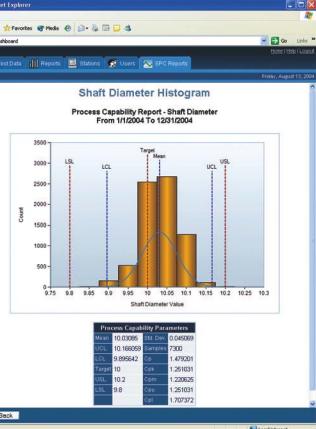

few days, we were able to get a quick and easy boundary-scan test going, compared to the 10 weeks it can take to build an expensive ICT fixture."

On the DIF boards, for example, the boundary-scan tests checked for functionality and for electrical faults in the onboard power supplies. Without the boundary-scan system, there was a 67% yield of functional DIF boards during the prototype stage, where the engineers used scopes, probes, meters, and logic analyzers to prove out the design. But when they used x-ray inspection and boundary scan, the yield jumped to 98%.

"This was a real eye opener that CT engineering really loved," recalled GEC test manager Sallis, "because they now had a much larger volume of boards to work with. The result was a highly accelerated development process."

Added Russ Hum, the lead development engineer for the VCT's data-acquisition system: "We went from hours de-

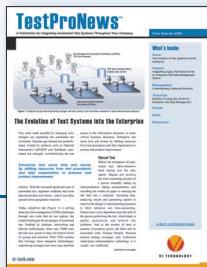

Demand Results From Your Test Data


Improve product designs
through test data accessibility
and reports

Reduce manufacturing costs
by identifying reasons for
product failures

Exceed quality standards
through test data tracking

Improve product branding
by reducing failures in the field


ARENDA[®] 2005

Test Data Management

Arendar is the scalable solution for managing and extracting valuable information from test data throughout the product life cycle. This award-winning enterprise software configures SQL Server and Oracle databases for test applications, collects data from test stations around the world in real-time using fail-safe technologies, analyzes test data to render information about your product's design quality and manufacturability, and gives secured access to test data and reports through web browsers.

Arendar minimizes the entry and recurring costs of enterprise test data management systems through:

- Graphical configuration of databases for test applications
- Source code generation for test development software
- Wizards to import legacy data
- Agents to interface with existing test stations
- User-based creation of custom web views and reports
- Integrated SPC analysis
- Popular analysis software interfaces (including Excel)
- Scalable from single-user to enterprise systems

Free enterprise
test newsletter
vi-tech.com/TPN

Call **1-888-689-4415** for a free
Arendar demonstration or evaluation
www.vi-tech.com/arendar

VI TECHNOLOGY

**"I can BUY
test equipment
from hundreds
of sellers
risk-free?"**

Now you can.

- Money back guarantee
- Thousands of postings
- No middleman
- All in one place

selldirect.testmart.com

888-665-2765

SellDirect
powered by **testmart**

MEDICAL TEST

With the project's tight cycle time, the team needed to spot problems as early as possible. Here, engineers Brian Breuer (front) and Steve Woloschek perform fault-seeding tests on detector boards.

bugging a board with bench instruments to just minutes with boundary scan."

Compton and his team say that boundary scan can also play a role in volume production. Team member Larry Beine built a fixture that can simultaneously test four cards used to reconstruct the CT images. "The pin density on these boards is high enough that it is very difficult to design an ICT fixture that can thoroughly test it," explained Compton.

A bit of home brew

Examples abound of such test ingenuity throughout the VCT project, which helped speed design and curb costs. For instance, in the development of the DIF boards, Hum's team built a PC-based simulator that allowed engineers to hook up the data-acquisition system to the ADC boards to take simulated scans and collect data. To test the regulators on the DIF boards, Beine used a small ADC chip on the board to measure voltages, eliminating the need for an additional test circuit setup outside the board.

And while the ADC module team had to build custom testers for several key stages in the manufacturing process, the engineers used the same software throughout, changing only the configuration files. Among the key components of these testers: a voltmeter, a PXI chassis and PXI boards, a CAN interface, and a PC.

"These aren't simple Class 1 boards we are dealing with," noted ADC module team leader Joe Block. "The delicacy of the measurements at the front end—in picocamps—challenges us to design testers that are effective and rigorous at those levels so that these boards are highly reliable inside a CT scanner." Such reliability is crucial to the functioning of the scanner. If even one of the 1024 A-to-D channels in the CT's detector array malfunctions, the image is often unusable.

The GE engineers also had to find ways to keep from drowning in all the test data collected during board development, pointed out Delplanque. The solution: save detailed test data on failures or marginal performance, while relying on overall statistics to track the results of passed components. Engineers also designed a visualization tool that lets manufacturing quickly identify patterns in board failures.

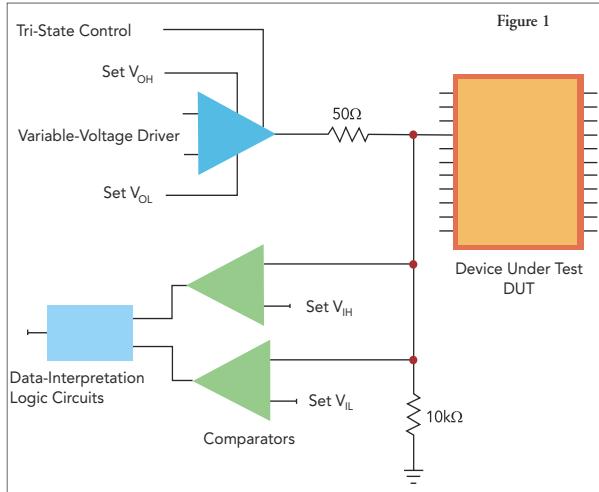
An engineering triumph

By all accounts, such innovative test work played a major role in the LightSpeed VCT's success. Despite the need to coordinate numerous design and test teams involved with multiple subsystems, the cycle time for the VCT was much faster than it was for the first LightSpeed CT introduced in 1998, noted Gary Strong, the lead engineering manager on the project.

Recent articles in publications such as *Radiology Today*, *Popular Mechanics*, and the *Wall Street Journal* have heralded the technical advancements of the machine. And within GE itself, the scanner has garnered the company's coveted "imagination breakthrough" designation. "The word we are getting from within the company is to make more of these machines," said manufacturing test engineer Gary Schilling. "It's a big hit with customers."

Brian Kost, who manages the engineering effort for all of GE's CT scanner products, traces the VCT's success to its ability to answer the needs of the medical community—most notably, greatly enhanced imaging of the heart. "It's a great product to be associated with," said Kost, "and we couldn't meet the demand that we are getting right out of the chute without the critical role of test. It helped us catch problems early in the process, giving us the assurance in final assembly that we are building a quality product." **T&W**

TIM EVANS


THE DATA DETECTIVE

Digital Data Hits Highs and Lows

When testing digital circuits, engineers stimulate inputs and monitor outputs to determine whether or not devices or circuits work properly. Thankfully, software can take a design and create a pattern, or vector, of 1's and 0's that test equipment can automatically apply to digital inputs. A mismatch between a device's actual and expected output indicates a fault.

Many manufacturing faults of digital components fall into one of the following categories: open circuits, short circuits, or stuck-at faults. The latter group divides into stuck-at-1 or stuck-at-0 faults, which means an output remains "stuck" at a logic-1 or a logic-0 level.

Most equipment used to test digital circuits includes both a voltage driver and comparators for each channel, as shown in the figure below. These pin electronics let test engineers stimulate a device's digital input as well as monitor the state of that pin.

The circuit above, similar to those found on the National Instruments NI-655x waveform-generator/analyizer cards, includes independent stimulation and measurement electronics that operate simultaneously. Each pin requires its own driver and comparator circuit.

The variable-voltage driver shown in the figure will generate a high output voltage (V_{OH}) or a low output voltage (V_{OL}) to produce a logic-1 or a logic-0 at the input of a device under test (DUT). The driver circuit also can present a high impedance to the DUT, in effect disconnecting the driver portion of the pin electronics from the circuit. Programmable V_{OH} and V_{OL} levels let this circuit drive ICs in many logic families. The 50- Ω series resistance at the driver's output enhances signal integrity.

Measurements at the driver's pin involve two comparators, one that compares the DUT's output voltage to a low acquisition voltage (V_{IL}) and another that compares the DUT's output to a high acquisition voltage (V_{IH}). (Software will preset these voltages, depending on the tests an instrument requires.) Logic circuits connected to the comparators in the pin electronics determine whether the DUT produced a valid logic 0 or logic 1. In the event of a fault, this logic also can determine if the DUT has produced an invalid output.

The Chips are Down

Chris received the first batch of digital ICs he designed to operate at a custom voltage. Much to his dismay, initial tests show no chips work. Chris plans to use a digital I/O board to determine whether the problems exist in his design or in the silicon.

To help Chris test the chips and discover the problem, go to <http://rbi.ims.ca/4395-501>

between the preset V_{IL} and V_{IH} levels. The comparator circuit provides a known input impedance—a 10-k Ω resistor that connects to ground. Note the comparator circuits operate independent of the voltage driver, so the digital test equipment can simultaneously stimulate a pin as well as measure the voltage on it.

To test a device, digital test equipment can apply a "marching-1" pattern—1000..., 0100..., 0010..., and so on—to a DUT's pins. The tester monitors the DUT's pins to ensure the detected pattern matches the output pattern produced by the driver electronics. If a marching-1 pattern produces logic 1's at two or more pins, a short may exist between those pins. Likewise, if the driver applies voltage and not enough current flows—as detected by the comparators—the circuit may have an open. (Tests also may use a marching-0 pattern; 0111..., 1011..., 1101..., and so on.)

Stuck-at faults usually appear when a conductor shorts to a power-supply (Vcc) or ground connection. During a marching-1 or a marching-0 test, for example, a stuck-at pin will appear as an extra 0 or 1 in the pattern. Generally, no amount of stimulation will change the state of a stuck-at pin.

Don't worry about constructing pin electronics—companies offer them for buses such as PXI and VXI, and they come as part of some automatic test equipment (ATE). Companies also offer test-development software.

Go to <http://rbi.ims.ca/4395-501> to solve the challenge!

The resolution you want—2 megapixels. The speed you need—34 frames per second. Competitively priced. The Pantera SA 2M30.

Pantera SA 2M30 Specifications

- “Stop Action” (SA) imaging
- Excellent tap matching
- Compact and robust
- Competitively priced
- **NEW** Color imaging available
- **NEW** Programmable LUTs for greater brightness, contrast and gamma correction
- **NEW** Programmable gain steps of 0.1dB
- Camera Link®

There's a Pantera for every imaging need. Speak to a DALSA sales professional today.

Visit www.dalsa.com/info for more information. Password: **ps2m30**

North America +1 519-886-6000 | Europe +49 8142-46770 | Japan +81 3-5960-6353

©2005 DALSA

Machine-Vision & Inspection

TEST REPORT

PARTS MARKING

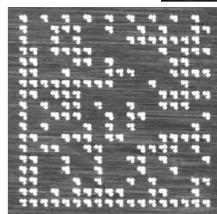
Keeping track: Evolving standards

Steve Scheiber, Contributing Technical Editor

The move toward tracking parts by marking them directly rather than by relying on labels that may come off during manufacturing is gaining momentum. In fact, the US Department of Defense (DoD) MIL-STD 130 now requires manufacturers to mark parts with a unique identifier. Concurrent with this trend, one-dimensional bar codes are being replaced by two-dimensional Data Matrix codes—a collection of black and white dots or squares arranged in a rectangular pattern—that convey more information in less space.

Initially, companies employed direct part marking (DPM) primarily for internal process and inventory control, so the meaning of the marks differed from company to company. As the use of the DPM technique left the manufacturing plant and moved into the supply chain, an open-standard specification arose to ensure readability and avoid misinterpretation of codes as parts passed from one company to another.

Direct-part marks must be both verifiable and readable by vision and


inspection systems. In that regard, says Carl Gerst, marketing manager for Cognex's ID Products business unit in Natick, MA, the new print-quality specification (ISO 15415) as well as the original Data Matrix specification (ISO 16022) made some unfortunate assumptions about DPM verification. The specifications assumed that—like paper-based inked bar-codes—DPM codes would predominantly consist of high-contrast, well-formed square cells of equal size.

Techniques challenge standard

When manufacturers turned to different marking techniques, such as lasers, electrochemical etch, and dot-peen, however, the standards proved less than successful. Laser marks on metal are more likely to appear as gray-on-gray than as black-on-white. As a result, verification systems that base their pass/fail decisions on tight contrast measurements may fail DPMs that readers can read with little difficulty.

In addition, dots may be square or round, depending on the marking technique: Dot-peening tends to produce round marks, ink-jet and laser marks can be round or square, and electrochemical etching tends to produce square marks. Also, with the dot-peen technique, the dots are typically smaller than the blank spaces around them. Standards must take these factors into account.

Although the ISO is responsible for issuing the standards, the organi-

Examples of dot-peening (left), and laser-marking techniques (above).

Courtesy of Cognex.

zation does not create them. That role falls to the Association of Automatic Identification and Mobility (AIM; www.aimglobal.org). Gerst and representatives of other companies have been working with AIM's Technical Steering Committee to revise the Data Matrix standards along more practical lines.

Revisions on the way

Gerst expects the revisions will be released and implemented sometime in Q3. He also anticipates that these standards will eventually be incorporated into the next revision of MIL-STD 130. Even companies that do not work directly with the DoD will likely adopt the standards.

The good news about the evolving Data Matrix standards is that the changes are being orchestrated from the bottom up—that is, by users of the standards who have assessed their limitations. The resulting changes will serve all interested parties better than standards developed in an ivory tower by people without the day-to-day practical experience. □

INSIDE this issue

- M2** Editor's note
- M2** News
- M5** Closing the gap between AXI and semi-automated systems
- M9** Meeting the lead-free inspection challenge
- M12** Products

EDITOR'S NOTE

Inspection? What's inspection?

Steve Scheiber, Technical Editor

Putting out this test report requires drawing the boundaries within which to work. Where does testing stop and inspection begin?

Identifying automated optical or x-ray techniques as inspection does not require much of a stretch. Ditto

classifying functional or system test or "hot mock-up" as test. But some techniques fall into a gray area.

Infrared analysis

looks for hot spots on a printed circuit board. Most commonly used to detect shorts on a board (very) briefly under power, subtler versions can examine a board in normal operation, comparing its thermal signature to that of a good board. In that sense, the technique resembles functional test more than inspection. Nevertheless, because it tests by "looking" at the board—even a board in operation—I classify it as inspection.

Some moving-probe testers include cameras for more accurate x-y positioning. Those cameras can also perform rudimentary inspection—especially presence/absence inspection. Because these systems' primary function is test, however, I lump them in with the testers.

The ultimate goal of all the techniques is the same—to ensure that a circuit works—so making such divisions may seem pointless. But finding an optimum engineering solution generally means breaking large problems into manageable pieces. Establishing these distinctions, however arbitrary, helps to focus our attention on optimizing each process step. □

Contact Steve Scheiber at sscheiber@aol.com.

NEWS

Dalsa licenses image sensor technology

DALSA HAS announced a technology licensing agreement with Philips Electronics. Under the license, Dalsa will use Philips patent rights, know-how, and product and prototype device designs relating to CMOS imaging technology.

This agreement follows Dalsa's creation of a new CMOS Business Unit earlier this year, and Dalsa says that the access to Philips' CMOS technology will give it an even stronger base from which to launch new products. The initial focus for the new CMOS group, and for the application of the Philips' technology, will be in the professional and high-volume industrial markets.

Sawas Chamberlain, CEO of Dalsa, said, "I am very pleased to have access to Philips' world-leading CMOS technology for image sensor products and to bring on board the team that helped develop it. This will allow us to make use of the CMOS technology and product designs almost immediately and well into the future." www.dalsa.com. □

Cognex, Lockheed promote ID products

COGNEX HAS REPORTED that it will work with Lockheed Martin to promote products that will help Department of Defense contractors meet new government requirements for unique identification of parts. The company says that the DoD Unique Identification (UID) Compliancy Initiative requires that every piece of equipment purchased by the DoD with a value greater than \$5000, or that requires serialization, be marked with a unique 2-D matrix code.

Cognex manufactures ID readers designed to verify 2-D Data Matrix codes on a variety of surfaces. Lockheed Martin supplies I-Guides, a

software application that manages UID-related data, creates a process audit trail, and ensures that the supplier's process meets DoD policy requirements. Used together, the two company's products can help contractors meet the DoD identification requirements.

"This agreement enables Cognex and Lockheed Martin to approach customers with a simple-to-adopt solution for meeting Department of Defense compliancy requirements," said Justin Testa, senior VP of ID Products for Cognex. "As a result, customers can get state-of-the-art technology, and avoid the cost of reinventing the process internally."

"UID compliancy requirements represent a big change for Defense Department suppliers, and this agreement can make those changes easier for suppliers and accelerate the success of the Defense Department's UID program," said Richard Erickson, program manager for I-Guides at Lockheed Martin Maritime System & Sensors' Tactical Systems line of business. www.cognex.com. □

Calendar

International Robots & Vision Show

September 27-29
Rosemont, IL

Sponsored by: Automated Imaging Association and Robotic Industries Association
www.machinevisiononline.org

Vision 2005

November 8-10
Stuttgart, Germany
Produced by: Messe Stuttgart
www.messe-stuttgart.de/vision

AIA Business Conference

February 1-3, 2006
Orlando, FL
Sponsored by: Automated Imaging Association
www.machinevisiononline.org

Unleash the fastest zoom imaging platform on earth

 FETURA™

...and hold onto your spots!

Fetura™ Technology represents a whole new breed of zoom imaging platform for the next generation of high-speed vision applications.

Engineered for agility and built for speed, Fetura platforms sprint through their full zoom range 10X faster than conventional cam-driven zoom lenses. With a highly evolved onboard microprocessor, Fetura realizes the full potential of imaging precision with tenacious magnification and parcentric repeatability.

Equipped to survive the most grueling vision applications, this robust design delivers ferocious performance out to 1-million zoom cycles. Fetura's innovative design further closes the gap on imaging versatility with state-of-the-art connectivity and platform adaptability to most any lens set. Now you can specify the connectivity, control, magnification, zoom range, wavelength and optical characteristics needed to meet your exact performance parameters.

Spring your next-generation vision design to the top of the throughput food chain. Contact Thales Optem today and **get in on the chase!**

www.thales-optem.com/tmwfet

USA Toll free: (800) 430-3041

THALES
THALES OPTEM INC.
Rochester, New York USA
ISO 9000:2001

Unwrap and Inspect

Customer Challenge: Inspect cylindrical objects for label or surface defects on products such as cans, bottles or etched glass containers, without having to install expensive, multiple high-resolution cameras.

DVT Solution: DVT's new Legend LS Line Scan camera generates a single, flat, high-resolution, distortion-free image by unwrapping the label as the product rotates in front of the camera. The image is acquired line-by-line at a rate up to 18,000 lines per second, producing resolutions up to 8190 X 2048 pixels.

Built-in Ethernet connectivity gives you the power to integrate the Legend LS into your existing factory network – and provides remote access for online diagnostics and monitoring.

Like all DVT machine vision systems, the Legend LS includes free software and software upgrades; free technical support; and free training (available in the classroom, on the web, or on our interactive Virtual Tour CD). For more information, go to <http://www.dvtsensors.com/products>.

Frank Baumgartner
Line Scan Product Manager
DVT Corporation

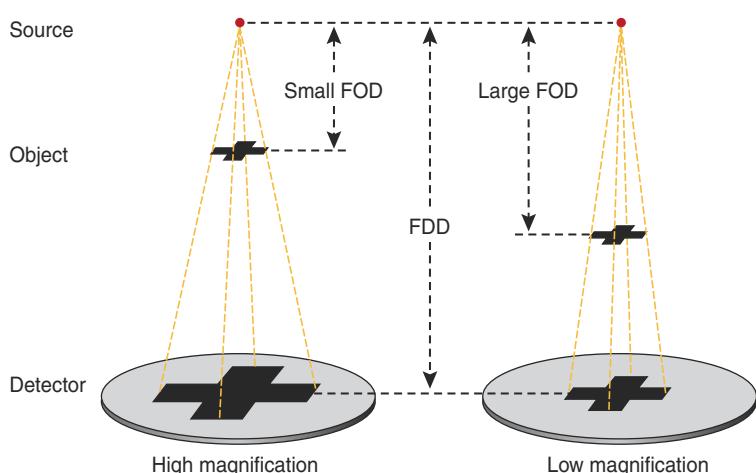
ISO 9001:2000

© Copyright DVT Corporation 2005. All trademarks are the property of their respective owners.

X-RAY INSPECTION

Closing the gap between AXI and semi-automated systems

Boris Mathiszik and Holger Roth, phoenixlx-ray Systems + Services


Manufacturers of industrial x-ray equipment judge the quality of an x-ray system by the images it produces and the information derived from those images. While the hardware is certainly a key to system quality, it is software that differentiates the many low-cost manual systems from the mid-priced semiautomated and higher-priced automated systems.

The line that separates these inspection classes, however, is beginning to blur. Semi-automated machines now include sophisticated image-processing software once found exclusively on automated x-ray inspection (AXI) systems, and they can replace AXI systems in many applications.

Obtaining quality images

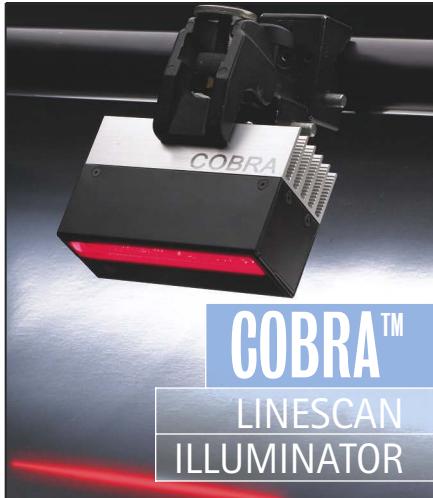
In electronics imaging, magnification and focal spots are often misunderstood. While many manufacturers quote the software magnification (or pixel magnification), it is a system's geometric magnification that places limits on image quality (Figure 1). Most x-ray machines achieve high magnification by moving the target, the detector, or both, which takes time. Thus, AXI machines often sacrifice magnification to minimize test time.

At higher magnifications, the focal spot size of the x-ray source limits resolution and causes image blurring or a "penumbra" effect. The image on the left in Figure 2 represents an image from a large-spot size x-ray tube architecture that can resolve images down to a few microns, a technology that was introduced about 20 years ago. Newer designs improve on that performance by an order of magnitude. By manipulating additional lenses and apertures to produce a converging beam hitting the output tungsten target, the resulting tube provides an extremely small focal spot that reduces the penumbra effect (right side of Figure 2). Incorporating this capa-

Fig. 1 The geometric magnification of an x-ray shadow microscope equals the focus-to-detector distance (FDD) divided by the focus-to-object distance (FOD).

bility into semi-automated x-ray systems allows those systems to meet customer demands at a lower cost.

Achieving a high-quality image also requires a good detector. The quality of the detector—even for the latest digital types—primarily affects image contrast. Other techniques that aid in capturing clear images include tilting the target and a technique that we at phoenixlx-ray call oblique view at highest magnification (OVHM). Although effective, tilting takes time for switching to the oblique angle and re-aligning the often shifting field of view. Our OVHM technique allows full off-axis detection while keeping the target close to the focal spot. We find that the technique delivers high-quality images in a reasonable time with no loss of magnification.


Software

Software and image-analysis tools are becoming the differentiating features that separate less than \$100,000 x-ray systems from semi-automated and AXI machines. Fast, effective image-analysis software has more impact on speed, accuracy, and repeatability than

any other aspect of the system. Software can also blur performance differences between AXI and semi-automated tools, making automated handling the primary difference.

Whereas most low-cost semi-automated x-ray machines include limited software packages, many of the tools used on AXI and automated optical inspection (AOI) machines are migrating down to the mid-priced semi-automated systems and are changing the way these machines are being used. Suppliers of semi-automated x-ray systems have begun to add BGA defect coverage ranging from ball presence/absence and bridging detection to void analysis, diameter measurements, roundness checks, and automated wetting analysis. For IC packaging applications, the tools perform automated void detection for conductive and non-conductive die attach, solder-bump inspection, wire-bond integrity checks, and wire-sweep measurements.

In the latest software packages, standard BGAs, fine-pitch BGAs (FBGAs), and chip-scale packaging (CSP) device libraries allow users to teach inspection systems to recognize

Generates a uniform, bright stripe of illumination for linescan

- 200,000 lux at 630 nm
- Frontlight and backlight configurations
- 630 nm, 740 nm, 395 nm, 405 nm, 470 nm, white
- 125 mm, 250 mm and 500 mm line lengths
- Uniquely high brightness and long lifetime made possible by patented technology

Applications include:

- Linescan
- Web inspection
- Inspection of currency, lumber, FPD, foil, paper, plastics, non-wovens

StockerYale Inc.
275 Kesmark, Montreal, Quebec
H9B 3J1 Canada
Tel.: (514) 685-1005
Fax: (514) 685-3307

1-800-814-9552
cobra@stockeryale.com

Copyright © 2005 StockerYale, Inc. All rights reserved.

www.stockeryale.com

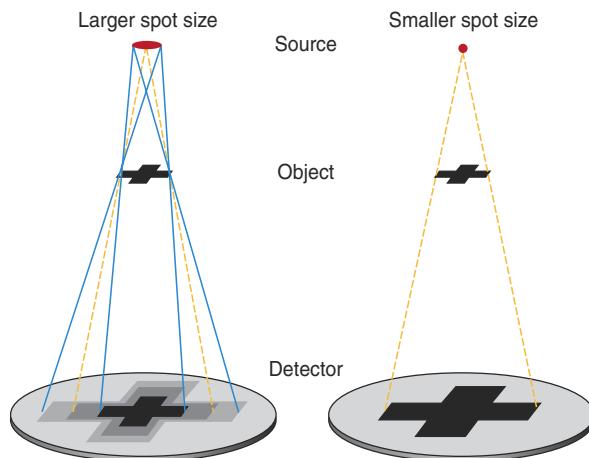
Machine-Vision & Inspection TEST REPORT

Closing the gap • from page M5

component layout, proper solder diameter, and acceptable gray levels with minimal setup time. Many packages even offer default threshold values, reducing setup times even further.

Like AXI and AOI systems, semi-automated machines are using image-processing software packages to import PCB CAD data, reducing setup time. The software

integrates automated inspections, automated pass-fail decisions, and data links to rework or paperless repair stations.


Defect coverage

Manufacturers typically use semi-automatic x-ray inspection equipment in two ways—either as manual real-time failure-analysis tools in laboratories or as quality-assurance tools in production. Some semi-automatic x-ray systems now incorporate AXI tools for production applications.

For BGA, CSP, and flip-chip applications, automated inspection using oblique views has increased defect coverage. AXI based on oblique viewing provides two advantages. First, angled views and sample rotation allow programmers to maximize signal-to-noise ratios on double-sided boards where signals from the other side of the PCB blur or deform the signal of the primary inspection target. Second, oblique viewing enables automated wetting inspection.

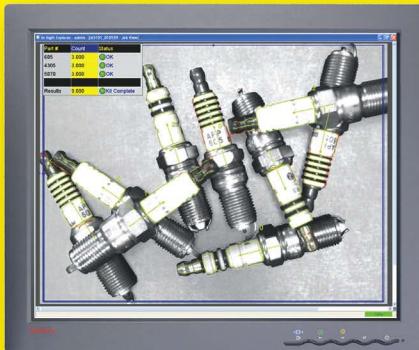
Customers of semi-automatic x-ray equipment continue to ask vendors to extend their automated defect coverage beyond standard BGAs. Typical applications include inspection of gull-wing devices such as quad-flat packs (QFPs), plated-through holes (PTHs), and connector pins. Adding such measuring techniques enables

new customers to increase the automated defect coverage without buying a fully automated machine. Existing users can also take advantage of the new features at little extra cost. Unavoidable extra costs include acquiring the appropriate software modules, minimizing programming time, and potentially increasing inspection cycle time. The cost savings result from less

Fig. 2 Because of the penumbra effect, the size of the source limits the resolution of the image.

rework and scrap in the field and from transferring test coverage from a later manufacturing and test process step to an earlier step—typically after reflow in the SMT process.

True submicron x-ray inspection systems have been the “holy grail” of the x-ray industry for many years. Yet, submicron x-ray tubes are unlikely to replace large-spot tubes for all inspection applications in all industries. Lower resolution systems will still be used to inspect large, dense objects, because their ability to create a large x-ray flux cannot be duplicated with submicron sources. □


Boris Mathiszik is VP of phoenix|x-ray's East Coast division. He has been involved in product management for AOI and x-ray equipment for the past 10 years. bmathiszik@phoenix-xray.com.

Dr. rer. nat. Holger Roth is applications manager at phoenix|x-ray Systems + Services in Wunstorf, Germany, and is in charge of the company's inspection service laboratory in Stuttgart. hroth@phoenix-xray.com.

POWER TOOL

Introducing PatMax on In-Sight

The first step in any machine vision application is to find the part. PatMax® does that job better than anything else.

PatMax sets a new performance standard for factory floor vision sensors.

It simplifies mechanical fixturing and eliminates complicated lighting. Industrial-grade In-Sight® vision sensors lead the industry for resistance to shock, vibration, dust, and liquids. Now you can take advantage of all the power of PatMax on In-Sight.

COGNEX
WWW.COGNEX.COM
1-800-677-2646

Download your **FREE**
white paper on PatMax at
www.cognex.com/patmax

A winning combination. Our smart cameras are guaranteed to hit the jackpot.

With every spin Matrox Iris P-Series lines up just right. These highly integrated smart cameras have a powerful embedded Intel® architecture processor for today's machine vision algorithms.

They run Windows® CE .NET, a robust real-time operating system with a familiar programming environment that minimizes your development time. Iris P-Series' open environment gives you the flexibility of customizing the software to match your application's specific requirements.

Plus, Iris P-Series is the only smart camera family that lets you develop your application with the field proven Matrox Imaging Library (MIL) and run it directly on the camera.

Don't gamble on other smart cameras.
With Matrox Iris P-Series you're sure to win.

Matrox Iris P-Series

» Contact us today!

Call: 1-800-804-6243/+1-514-822-6020

Email: imaging.info@matrox.com

Visit: www.matrox.com/imaging

AUTOMATED OPTICAL INSPECTION

Meeting the lead-free inspection challenge

Steve Scheiber, Contributing Technical Editor

The movement away from using lead-based solders presents challenges to board manufacturers. Not only must they find a solder that offers properties as close as possible to those of lead solder, but they must also find new ways to test their products and verify their circuits. Automated inspection offers one answer to the second problem.

Regulations in Europe and China require the removal of all leaded components and solder in certain electronic products sold there by July 1, 2006. Other countries—including the US—are expected to follow suit.

The new regulations do not cover all products. Exceptions include telecommunications network infrastructure, medical products, and defense and aerospace systems. Nevertheless, high-volume products such as personal computers, televisions, DVD players, and cellular phones must conform. Stig Oresjo, senior test strategy consultant with Agilent Technologies, estimates that the regulations will cover 60–70% of all boards sold into the regulating countries (Ref. 1).

Although companies might like to make the transition by following Path A in Figure 1, limited knowledge of the effect of lead-free solder on the process and the dearth of lead-free components will make that approach impractical. Industries forced to go to lead-free will probably follow Path B, incorporating lead-free solder and adding lead-free components as they become available.

Path C will apply more to exempt industries, where companies will continue to use conventional tin/lead solder but will adopt lead-free components as parts makers introduce them. Companies that make both covered and exempt products may elect to

make all their products lead-free to avoid maintaining two different manufacturing processes, inventories, and test and inspection strategies.

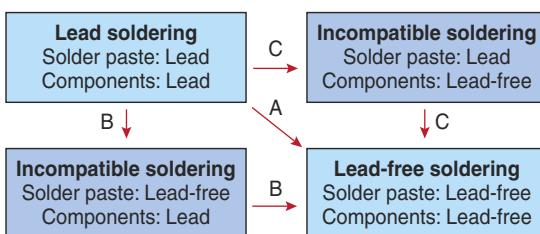
New alloys, new failures

After experimenting with metals, the electronics industry has settled on a range of alloys consisting mainly of tin with a few percent silver and less than 1% copper. These solutions prove less than perfect, however. Board manufacturers can expect more defects, at least at first. Lead-free solder melts at 217°C compared to 183°C for its predecessor. The higher

joints. Sufficient wetting also helps slightly misplaced components to adjust themselves by floating a little on pads during reflow.

Wetting forces during reflow tend to draw tin/lead solder paste back to pads, reducing the likelihood of shorts caused by solder bridges. Lead-free boards won't react in the same way, and will therefore tend to have more shorts. Also, lead-free wave-soldering may produce insufficient barrel fill on boards with through holes.

Because some manufacturers have started to conform to the regulations, the industry already has data on lead-free manufacturing. Figure 2


shows results from one manufacturer who makes two similar boards—one using tin/lead solder and the other lead-free. Each board contains about 1300 components and about 3000 solder joints, including BGAs, gull-wings, and SMT connectors, with the smallest component an 0402 with a pitch as low as 20 mils. The data cover 85,000 leaded boards and 60,000 lead-free.

The figure includes only fault types affected by the change.

The greatest increase appears in tombstone faults, with significant increases in solder opens and chip misalignments. Contrary to expectation, these data show a decline in defect rates for solder bridges and shorts. Oresjo suggests that this result may be mere coincidence or may result from the close attention paid to the manufacture of this board by experienced engineers who kept the process under tighter-than-normal control.

Impact on inspection

From a process perspective, making lead-free boards will require more accurate solder-paste deposition to avoid inadequate pad coverage. Al-

Fig. 1 While most manufacturers would prefer to make the transition to lead-free manufacturing by following Path A, they are more likely to follow Path B. Manufacturers not governed by the regulations may follow Path C. Courtesy of Agilent Technologies.

temperature required for soldering and rework will subject components and substrates to additional stresses that will reduce their reliability.

Oresjo contends that because of the higher temperature, manufacturers may permit fewer repair attempts after a failure. "Shotgunning" a board after a functional-test failure may prove damaging as well. Both procedural changes will likely mean more scrap.

Also of concern, thanks to its metallurgy rather than its melting temperature, is that the new alloy exhibits lower wetting characteristics compared to lead solder. Wetting of molten solder determines how well it covers pads and device leads, as well as the shape of the resulting solder

VISION 2005

18th International Trade Fair for
Machine Vision and
Identification Technologies

Messe Stuttgart
8 to 10 November 2005

Much nimbler than the mouse

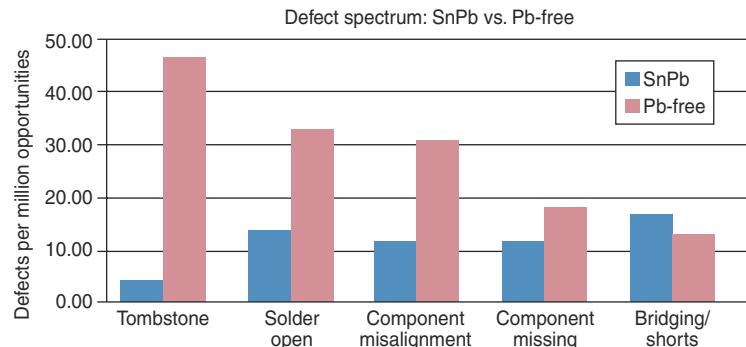
and also much more intelligent – the new
machine vision systems. You can measure
and control almost any production range
within seconds – in the manufacturing cycle.

Even with the most varied surfaces and light
conditions, you can ensure maximum
process speeds and qualities. Even in small
companies, the investment will have paid
for itself within one year. How? You can find
out from over 190 exhibitors at the world's
leading trade fair VISION.

More information and online registration:

www.vision-messe.de

Machine-Vision & Inspection TEST REPORT


Lead-free inspection • from page M9

though inadequate pad coverage would not generally be flagged as a defect, a fixture nail might miss the solder during in-circuit test and hit bare copper. Because solder provides better nail contact than copper does, the resulting tests may generate false failures. Similarly, the inability of components to correct themselves during reflow will mean stricter calibration of pick-and-place machines.

To deal with these issues, Oresjo recommends performing automated optical inspection (AOI) at post-paste and post-placement. Post-paste AOI will ensure adequate solder-pad coverage and allow for inexpensive correc-

Unlike other test methods, AOI can handle lead-free alloys with little adjustment. The new alloy is less shiny than the leaded version, joint shape will differ somewhat, and lead-free joints are grainier than with traditional solder, but such differences are relatively minor. Oresjo cites a study conducted by the National Physical Laboratory in the UK on six AOI systems. It concluded that the AOI step will perform as well as before with few modifications.

The effect of the higher defect levels that lead-free solder will likely create, however, may prove more problematic. Manufacturers already contend that AOI generates too many

Fig. 2 One contract manufacturer reports these defect levels for high-volume PCBs; the results cover 85,000 leaded boards and 60,000 lead-free boards. Courtesy of Agilent Technologies.

tion. Correcting inadequate or inconsistent solder volume before adding components will dramatically reduce solder-related problems later on.

Post-placement AOI would find misaligned components. With leaded solder, this step is often skipped precisely because the devices may move during reflow. Since movement is less likely with lead-free solder, a post-placement defect will remain after reflow, and repairing it at the earlier step proves less expensive.

Because of its lower wetting properties, lead-free solder is also less forgiving of slightly bent device leads, which may contribute either to actual performance faults or reliability (field) failures. Again, an additional inspection step can identify these problems even if the circuit functions properly.

false calls, especially false failures. With a rise in board failure rates, such complaints will likely become more insistent, even if the inspection results are as reliable as they were before.

Production bottlenecks may present a problem. Even cursory AOI takes time, and an increase in inspection efforts to cope with rising defect levels may mean inspection times that exceed the permissible beat rate. In addition, since a manufacturer may perform AOI at more places in the process, this problem may occur at more points as well.

Reliability concerns will increase the need to perform post-reflow inspection. Lead-free solder is more brittle than tin/lead, so even if a circuit functions in the factory, there is no guarantee that shipping it to the

customer will not cause a failure. To handle BGAs and other hidden nodes, automated x-ray inspection (AXI) will likely become the post-reflow inspection method of choice.

Lead-free solders offer less impedance to x-rays. Recalibration of AXI equipment can compensate. If both leaded and lead-free boards of the same type come down the line, for example, merely tweaking gray levels in the test program may suffice.

Analysis of inspection results offers side benefits. Diligently feeding results back into the process can permit improvements that minimize future defects. When manufacturers first turned to no-clean processes several years ago, defect levels in many places rose by an order of magnitude. As the industry gained experience in how the process differed from its predecessor, defect levels began to drop until they reached close to the level where they

had stood before the change. Oresjo suggests that lead-free manufacturing will likely follow a similar pattern.

Making the transition

Before addressing the issues raised by lead-free manufacturing, Oresjo recommends looking carefully at your current defect levels and fault spectrum. Understanding where you are today will help you manage the transition. He also suggests switching over only one manufacturing line at a time so you can more easily track and solve problems. Each line switchover should then proceed more smoothly than the last, and the entire migration will prove as painless as possible. □

Reference

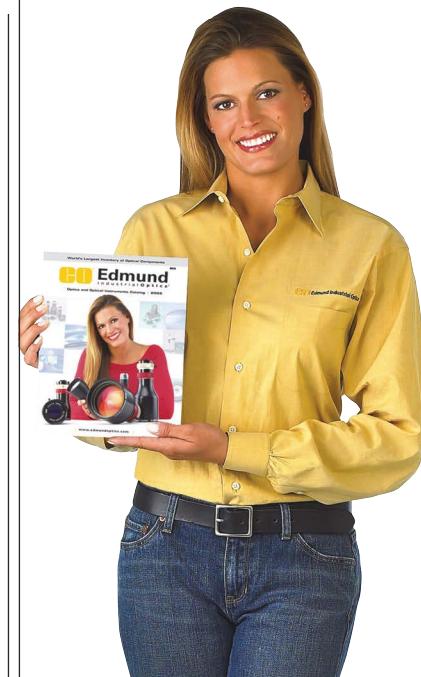
1. Oresjo, Stig, "Test and Inspection as part of the lead-free manufacturing process," Proceedings of the ECWC 10 / APEX Conference, February 22-24, 2005.

It's tough and it's at home where conditions are demanding and the environment unfriendly.

Composite Video

IEEE1394

USB 2.0

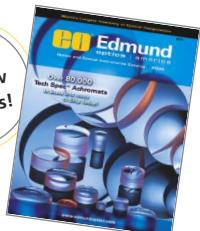

Custom CableDesigns

800-237-9576

www.nortechsys.com/intercon

intercon@nortechsys.com
FAX - 218-828-1096

Intercon 1
Nortech Systems



Required Reading for the Optics Professional

- Over 7,600 Products
- Over 20 Pages of Application Notes
- And...it's **FREE**

Request our NEWEST catalog today!

Over
225 New
Products!

800.363.1992

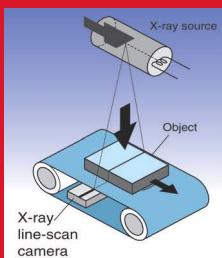
www.edmundoptics.com/TM

e-mail: TMW05@edmundoptics.com
See Us at ROBOTS & VISION, BOOTH #1515

ED **Edmund**
optics | america

PRODUCTS

Programmable smart camera


The Iris P300H programmable smart camera incorporates a monochrome 640x480 one-third-inch CCD sensor

and captures data at 100 frames/s. It is designed for high-throughput inspection applications that demand simple analysis or processing of images. The camera features software API for image analysis. *Matrox Imaging*, www.matrox.com.

Intelligent cameras

The new Impact T26 and T27 intelligent cameras are supported by PPT Vision's Inspection Builder software, which comes with algorithms for pattern matching, blob analysis, subpixel gauging, and character inspection. The T26 incorporates a 1280x1024 CMOS high-resolution imager; the T27 offers a 1600x1200 CCD imager. *PPT Vision*, www.pptvision.com.

Our X-Ray Line-Scan Cameras can help you see what you've been missing.

Hamamatsu X-Ray Line Scan Cameras image the interior of objects ranging from food products to aluminum castings at high resolution and high speed revealing product non-uniformity, defects and dangerous foreign matter. Consider the advantages of the Hamamatsu line of X-Ray Line Scan Cameras. It's like having Superman work for you.

To see what you've been missing, visit our website at www.whatifcameras.com/tmw.

HAMAMATSU
Answering the challenge.

360 Foothill Road, P.O. Box 6910, Bridgewater, NJ 08807 908-231-1116, Fax 908-231-0852 E-mail: usa@hamamatsu.com
JAPAN: +81-53-431-0214 GERMANY: +49-8152-375-0 FRANCE: +33-1-69 53 71 00 UK: +44-1707-294888
SWEDEN: +46-8-50 90 31 00 ITALY: +39-02-93 58 1733 SWITZERLAND: +41-31-879 7070

Imaging chain for x-ray systems

Feinfocus has announced the HDX-ray 16-bit imaging chain for its FOX x-ray inspection systems. The 2.6-Mpixel imaging subsystem features more than 65,000 gray scales with selectable frame rates from 1 to 30 frames/s. HDX-ray is available on all FOX systems or as an upgrade. *Feinfocus*, www.feinfocus.com.

Wafer reader

The In-Sight 1721 wafer ID reader tracks semiconductor wafers through the manufacturing process. Slimmer and faster than its predecessors, it still maintains mounting and functional compatibility with them. Cognex says the In-Sight 1721 reads wafer marks that have been affected by process effects such as CMP, edge beads, and copper metallization. *Cognex*, www.cognex.com.

ADVERTISER INDEX

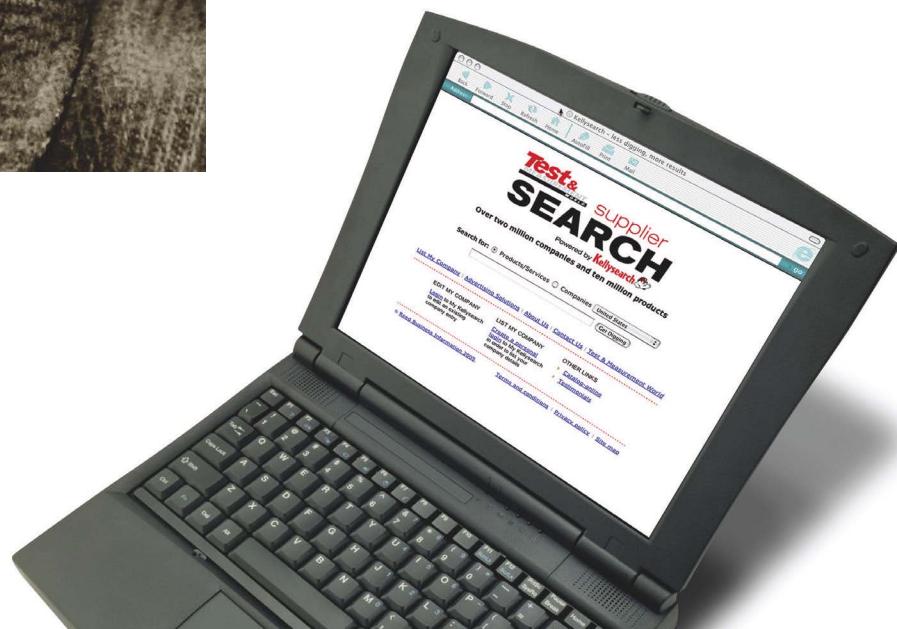
Advertiser	Page
Cognex	M7
DVT	M4
Edmund Industrial Optics	M11
Hamamatsu Photonics Systems	M12
Intercon	M11
Matrox Electronic Systems	M8
Stocker Yale Canada	M6
Stuttgarter Messe	M10
Thales Optem	M3

Machine Vision & Inspection Test Report is published in four issues of *Test & Measurement World*

225 Wyman St., Waltham, MA 02451
781-734-8423; tmw@reedbusiness.com

Copyright 2005, Reed Business Information

 Reed Electronics Group


TMWsuppliersearch.com

**Better than trying
to read your
customer's mind.**

Putting your product catalog on TMWsuppliersearch.com makes it accessible 24/7/365. Better yet, we also make it word-searchable, which means that whatever is in your customer's head matches precisely with what's in your catalog. No muss, no fuss and no nasty electrodes. Make your catalog word-searchable today and close more sales. **Contact your Test & Measurement World sales representative at 781-734-8416.**

**Test &
MEASUREMENT
WORLD** supplier
SEARCH
Powered by **Kellysearch**

 Reed Business Information

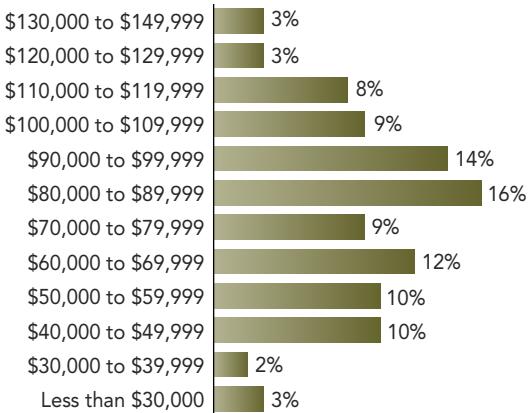
FEARS TEMPER CAREER SATISFACTION

ALTHOUGH SATISFIED WITH THEIR JOBS, TEST ENGINEERS WORRY ABOUT THE EFFECTS OF OUTSOURCING.

LAWRENCE D. MALONEY, CONTRIBUTING EDITOR

Most engineers love what they do for a living, but more of them are now asking, "Will the global economy take my job away?" That's a key conclusion from a new *Test & Measurement World* reader survey on careers and salaries, as well as from interviews with engineers on the opportunities and frustrations of the profession.

Many engineers still view the test field as an attractive one, but they stress that it is more important than ever to keep pace with new technology and develop an appreciation for the business needs of their companies. "It's vital that engineers be proactive about their careers," said Michael Keller, a 30-year engineering veteran and director of the American Society of Test Engineers (ASTE). "You need to have a plan on where you want to be five years from now and begin taking the steps to get there, such as earning an MBA or a graduate degree in engineering or computer science."


Rising pay, more responsibility

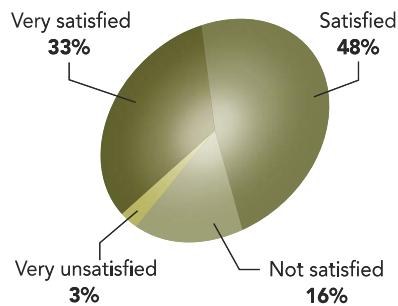
The *T&MW* survey reveals an average salary of about \$78,700, with more than half of respondents reporting a salary of more than \$80,000. Three quarters expect a pay hike this year, and the average expected increase is about 5%.

But along with good pay comes more responsibility, as companies quicken the pace of product development without a commensurate increase in the engineering ranks. The *T&MW* study finds 72% of respondents reporting an increase in the number of job functions they are being asked to perform. Time pressures and a growing number of projects also were cited as the top two job challenges.

Ray Worcester, who develops PCB fixtures for Tyco Healthcare in New York, said that with

Where do you stand on salary?

Source for all charts: 2005 Salary Survey, *Test & Measurement World*/Reed Research Group.



shorter design cycles, he has completed twice as many projects in the last six years as his predecessor did in a comparable period. Even working extra hours, he somehow found time to earn a master's degree in advanced technology, which includes subjects ranging from nanotechnology to the financial aspects of engineering.

"The biggest daily challenge that most engineers must deal with is being able to multitask," said Darcy Dement, a senior product manager at National Instruments. "That was something I struggled with as a new engineer six years ago." She noted that being able to prioritize among several projects can often present a bigger challenge than the technology itself.

With defense orders surging at Raytheon, engineer Bob Rassa agrees that it is a challenge to keep from overworking engineers and other technical staff. "Quality of life issues, such as the need to balance between work and fam-

Satisfaction with engineering career?

ily life, are a real concern," said Rassa, who also serves as the president of the IEEE's Instrumentation & Measurement Society.

Duane Quam, a Minnesota engineer who develops manufacturing tests for JDS Uniphase, cited "working with new technology" and "having enough people to do the job" as two of the chief pressures he faces. "You need to be so much more efficient today," he said.

Even with increasing workloads, most engineers remain fairly content with their work. Our reader survey shows that 81% of respondents are either satisfied or very satisfied with their work. The three biggest contributors to job contentment: a feeling of accomplishment (41%), technical challenges (37%), and salary (31%).

"Creativity in test methods is critical to the success of every product, and it is important for organizations to understand and appreciate that," said Jeff Lewis, quality assurance manager for Arrow International, a Pennsylvania-based medical equipment company. "So the work environment itself plays a big role in job satisfaction."

An uncertain outlook

With the first of the huge baby boomer population turning 60 next year, medical companies like Arrow can look forward to rising business opportunities, which will benefit engineers. Also enjoying solid business: OEMs and their suppliers in commercial aircraft, off-road and heavy equipment, cell phones, and other consumer electronics. Boeing's orders, for example, were up 25% for the first four months of 2005, versus the same period in 2004, while Caterpillar is projecting at least a 35% jump in profits this year to a record \$2.6 billion. Apple Computer, with its hot iPod product, enjoyed first quarter profits that were up 530% over the same 2004 quarter.

But other sectors of manufacturing—most notably automotive—find themselves reeling from foreign competition and, in the case of General Motors and Ford, internal problems as well. Add to that the movement of more manufacturing operations to China and the outsourcing of more engineering jobs to foreign countries, and it's no surprise to see a nagging sense of worry among many engineers. The reader survey finds job security as the biggest single concern of respondents.

"The globalization of the economy is producing a demand for cheaper and cheaper goods, and as a result, we are shipping our future to China," said Roger Fish, a 30-year engineering test veteran in Wisconsin. His company, Jefferson Electric, makes power transformers for factories and is feeling the pressure from lower-priced Chinese products.

SNAPSHOT of average respondent

AGE: 46
GENDER: Male (96% of respondents)
SALARY: \$78,700
EXPERIENCE: 18 years

Looking ahead, job growth for electrical and electronic engineers is expected to lag the average of all occupations, according to the latest Department of Labor forecast. The DOL's "Occupational Outlook Handbook 2004–2005 Edition" predicts that EE jobs will expand from 292,000 in 2002 to between 300,760 and 318,280 in 2012. That amounts to a projected increase in EE jobs of between 3% and 9%, compared to a 14.8% gain for the average of all occupations.

In summarizing the situation facing the EE field, the report notes: "Although rising demand for electrical and electronic goods, including advanced communications equipment, defense-related electronic equipment, and consumer electronics products should increase, foreign

What three factors have the greatest impact on your satisfaction with your current job?

Feeling of accomplishment	41%
Technical challenge	37%
Salary	31%
Advancement opportunities	24%
Job security	24%
Benefits	23%
Company's financial health	16%
Relationship with boss	16%
Relationship with colleagues	15%
Location	14%
Feeling of recognition	14%
Leading a team	11%
Workload	11%
Managing people	5%
Relationship with subordinates	5%
Company size	4%
Physical or ergonomic environment at work (positive or negative)	3%
Travel	3%
Other	1%

Transparent Process **Solid Products**

Test drive your data on SigmaExpress today – for free!

Eliminate the need for desktop Test Data Management tools, software installation, hardware, or maintenance! Visit us online at www.SigmaQuest.com/SigmaExpress for a free demonstration!

2901 Tasman Drive
Santa Clara, CA 95054
(408) 654-9401 Ext. 112

www.SigmaQuest.com
info@SigmaQuest.com

SigmaQuest allows you to capture, control, and analyze test & process data in real-time, over the internet!

Find out how you can:

- Reduce scrap and purge losses!
- Reduce travel and labor costs!
- Reduce field repairs and increase customer satisfaction!
- Protect your brand!

FIND OUT WHY TOP COMPANIES CHOOSE SIGMAQUEST

“SigmaQuest’s experience in global manufacturing and testing is evident in this well-designed solution.” - NATIONAL INSTRUMENTS • *“After extensive research and evaluation, we selected SigmaQuest.”* - PLANTRONICS • *“We rapidly certified our Mexico and China factories using SigmaSure.”* - CSI WIRELESS • *“The SigmaSure dashboard enabled a single dynamic universe of data with many individual views.”* - STRYKER

competition for electronic products and increasing use of engineering services performed in other countries will act to limit employment growth. Job growth is expected to be fastest in service industries—particularly consulting firms that provide electronic engineering expertise."

Taking the initiative

With a tough job climate ahead, engineers see a need to become broader and more attuned to the business mission of their companies. "When technology was king, engineering led the pack," recalled Bob Durstenfeld with California's RAE Systems, which makes gas and radiation detection instruments. "Now, it is all about satisfying the consumer, and marketing plays a far bigger role." Because of this trend, Durstenfeld urges engineers to develop a "public persona" and learn to work more closely with customers.

AT Net Test, a Utica, NY, firm that makes equipment to test fiber-optic components and networks, Erik Wend agrees that engineers need to get broader in their outlook. "It can be as simple as being willing to do a white paper that will benefit customers," he said. "Such activities may seem like a distraction from your engineering duties, but they will make you more valuable to your company."

Dement of National Instruments also said that successful engineers need to have a blend of technical and business sense and be able to distinguish the features that are essential for a product, versus those that are tangential. "Today, it's not enough to be a great engineer," she explained. "You need to have an eye for business as well. The people who learn to do both become the real superstars."

What are the three biggest challenges you face on the job?

Time pressures	73%
Increasing number of projects	53%
Keeping up with new technology	36%
Taking on additional engineering functions	36%
Unclear company/division strategies	31%
Reducing the cost of test/measurement	29%
Other	6%

What three factors do you think are most important to an engineer's career advancement?

Leadership in solving tough engineering challenges	64%
Ability to complete test projects on time and within budget	50%
Ability to function as a team player	49%
Communication and presentation skills	47%
A flare for creative ideas	32%
Demonstrated talent for managing others	29%
Superior computer and programming skills	12%
Other	4%

What's the best way to get plugged into the business issues and corporate culture of your company? "Find a good mentor," advised Lewis of Arrow International. He also puts great stock in the development of "emotional intelligence," as described by Daniel Goleman in his best-selling book, *Emotional Intelligence: Why it can matter more than IQ*. "You may be getting the desired results from your tests, but you have to be able to communicate these findings to others, and that plays into the whole teamwork theme."

In the *T&MW* survey, respondents placed "ability to function as a team player" and "communications and presentation skills" in the top four factors needed for career advancement. They also cited "keeping current on technology" as their second biggest career concern, indicating a need for continuing education, if not a formal advanced degree. "If you go for a graduate degree, you'll not only show your company that you're serious about your career, but you'll also meet some of the best people in your field," observed Keller of the ASTE. Among his other career tips, especially targeted to young engineers:

- Keep a daily log of your engineering activities, so managers can better understand your contributions,
- Take some business courses and investigate forming your own company,
- Understand what is happening on an international scale in your field, and
- Publish papers and attend conferences in your specialty as a way to build your network.

The essential role of test

All these suggestions boil down to the need for engineers to be more broader based and more business savvy than ever before. They will also need to get used to the fast development cycle and quick changes that mark today's companies. And that includes being able to roll with the punches as projects get scrapped for more marketable ideas.

Even so, observers see the test field as more than holding its own in the engineering hierarchy. Dement of National Instruments likes the fact that her test work gives her a glimpse of a wide range of new technologies before they reach the marketplace. Durstenfeld of RAE Systems sees solid growth in automated test as companies try to ramp up volume and squeeze more costs out of their manufacturing processes.

Still others predict a growing demand for test services, both from equipment

Which one area are you most concerned about?

Job security	35%
Keeping current on technology	18%
Management support	15%
Sufficient operating budget	12%
Outsourcing	11%
Company merger or acquisition	5%
Keeping current on regulations	1%
Other	3%

suppliers and independent engineering consultants. "The test field will continue to grow," said Lewis of Arrow International. "Not only is there the need to meet the scrutiny of government regulations, but companies themselves want a lot more evidence to prove that a product will meet all performance requirements throughout its lifecycle." *T&MW*

WHAT'S YOUR TAKE?

Want to have your say about the state of the engineering profession? Check out chief editor Rick Nelson's blog, "Taking the measure," in which he comments on a variety of engineering topics, including globalization and the state of the engineering profession. Join in the discussion!

www.tmworld.com/blog

Machine Vision Takes Flight

Precision Alignment Enables Rapid Attachment of Raptor Wings

Customer Challenge: Mate two large fuselage sections of a supersonic fighter jet – Lockheed Martin's F/A-22 Raptor – with an accuracy of 0.004 inches across 18 wing lugs on each side of the aircraft over a 16 foot wing root. Approximately half of the wing lugs are on the mid-fuselage section, while the other half are on the aft-fuselage.

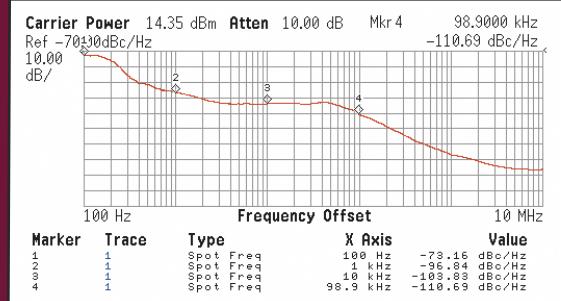
DVT Solution: DVT certified integrator Delta Sigma Corporation, working with Automation Solution Provider Advanced Control Solutions, placed a DVT Smart camera inside of a "pin" that was the identical size of the pins that attach the wing to the fuselage. There are 16 of these special "vision pins" which are placed into jigs that simulate an ideal wing. While the cameras monitor the position of the key fuselage points and supply real-time 3-dimensional data to the control computer, the computer sends position commands to 14 servo motors that position both of the fuselage sections in six degrees of freedom with an accuracy better than 0.001 inch. When the alignment is complete – typically a 30 second operation – the fuselage sections have relative positions for ideal wing attachment.

For more information visit Delta Sigma Corporation at: www.deltasigmacorp.com; or Advanced Control Solutions at: www.acs-ga.com.

Roger C. Richardson
President
Delta Sigma Corporation

Photo of F/A-22 Raptor courtesy Edwards Air Force Base.
© Copyright DVT Corporation 2005. All trademarks are the property of their respective owners.

Ask us about **Servant Leadership** and agape support
1-800-762-6077 • askdvt@dvtensors.com • www.dvtensors.com/servantleadership


Test Equipment Performance at an Affordable Cost

FULL 2-20 GHZ AND 1-22 GHZ FREQUENCY COVERAGE IN SINGLE UNITS AND PORTABLE SIZE

Micro Lambda Wireless, Inc. a leader in the development of next-generation YIG devices introduces a new line of high performance frequency synthesizers covering the 2-20 GHz and 1-22 GHz frequency range. Designed specifically for wide band and low noise applications, these new frequency synthesizer/extenders rival the best lab-grade test instruments on the market.

Phase Noise RF Frequency - 20 GHz

MLSE-SERIES WIDE BAND FREQUENCY SYNTHESIZERS.

This series of frequency synthesizers offer standard wideband tuning ranges covering 2-20 GHz and 1-22 GHz in standard models. RF Output power levels of +20 dBm and +17 dBm are offered respectively. Standard models provide output power leveling over the range of ± 20 dB with 0.1 dB resolution. Frequency step size of 1 Hz is standard, but is programmable with software for customer specific requirements. External reference frequency of 10 MHz is utilized, but 5 to 50 MHz are offered as options.

Excellent phase noise performance of -73 dBc/Hz at 100 Hz offset, -96 dBc/Hz at 1 kHz offset, -103 dBc/Hz at 10 kHz offset, -110 dBc/Hz at 100 kHz and -131 dBc/Hz at 1 MHz is provided at 20 GHz. The units operate from +15V and +5V supply lines and frequency control is via a 5-wire serial (SPI & busy) input protocol.

Options include second RF output covering 4-11 GHz which can be used for down conversion, a low noise 2nd L.O. output tunable over specified frequencies and an auxiliary input to add an additional frequency input within the units range – into the synthesizer switch matrix. All units measure 5"x7"x2" and weigh 57 oz.

FEATURES

- 2.0- 20.0 GHz, 1.0 –22.0 GHz, Frequency Bands
- Excellent Phase Noise
- 1 Hz Step Size
- Output power Leveling / 0.1 dB resolution
- Fundamental RF Output available for downconverting

"Look to the leader in YIG-Technology"

**MICRO LAMBDA
WIRELESS, INC.**

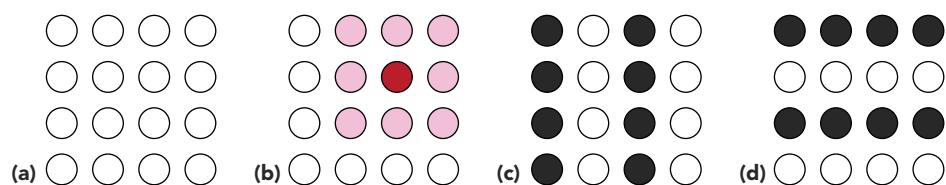
Array packages with high I/O counts require new test techniques for screening out wire-bond and other defects.

CONTINUITY TESTING

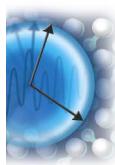
C.H. LIM, NATIONAL SEMICONDUCTOR

As semiconductor packages grow more complex, conventional continuity tests are no longer adequate for screening out open circuits and pin-to-pin shorts. Most test methods were designed for devices with pins aligned on the peripheral of the package. On today's micro surface-mount-device (SMD) and ball-grid-array (BGA) packages, however, the pins are aligned in a matrix—an arrangement that demands a new test approach.

In a typical continuity test, the test equipment applies a small current (usually a few millamps) in parallel to all pins and measures diode turn-on voltage for each pin to verify continuity between the tester and the internal die. With the appropriate limit set for the expected diode-drop voltage for each pin, a single parallel continuity test can screen for parts with open I/Os.


Such a parallel continuity test can also detect shorted I/O pins, as long as the short causes the pin output voltage to swing away from a typical diode-drop voltage—for instance, to ground or to a high-

voltage state. But a parallel test is ineffective at catching a short that produces an insignificant voltage difference.


To screen for such shorts, you can employ other parametric or functional tests, but by using such an indirect method, you risk losing the ability to indirectly screen some shorted pins when production test steps become consolidated as a device matures. In addition, indirect continuity testing might not detect a short between devices where adjacent I/O pins do not exhibit significant functional differences, such as two output channels of separate but similar voltage regulators.

Obviously, you need to use a different method to guarantee that all tested parts are free from potential shorts between pins. The solution needs to take into account the complexity of matrix, or two-dimensional, I/O arrangements, without significantly increasing the test time and cost.

The matrix arrangement of today's package types significantly increases the probability of two or more

FIGURE 1. (a) A grid arrangement provides many possibilities for pin-to-pin shorts. (b) The red pin could be shorted to any of the eight pink pins. (c) Black I/O pins are grounded, while the white I/O pins are tested for continuity. A test setup can detect horizontal and diagonal shorts between I/O pins. (d) Reversing the black and white I/O setups enables detection of vertical shorts.

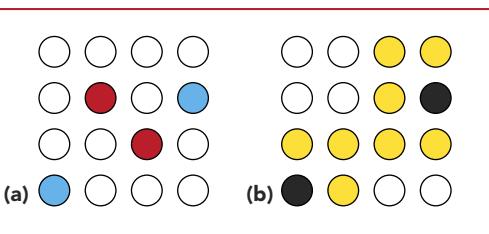
pins being shorted together, as a pin in the center of the package could be shorted to any of the pins surrounding it. But doing a continuity short test on two adjacent I/O pins for every combination would be counterproductive, especially as the I/O count increases.

The black & white continuity test

One method that shows promise for using ATE to detect opens and shorts without sacrificing test efficiency is a technique that I call the “black & white” continuity test. The black & white continuity test attempts to use a minimal set of test conditions to detect all potential shorts between two or more pins on a package.

In conventional pin-to-pin continuity test, the test iteration depends on the I/O count. For an I/O matrix of $m \times n$ where

FOR MORE INFORMATION


* On ATE and semiconductor test, visit WWW.TMWORLD.COM/ATE

m is the number of rows and n is the number of columns, it takes $(m \times n) - 1$ iterations to detect all potential shorts.

For typical ATE, the continuity test alone can take 1 s or more when the I/O count exceeds 100. The black & white test method, however, can hold continuity test time to tens of milliseconds, regardless of the number of I/O pins. The only additional test time required for this method involves tests needed for pins that cannot be toggled to ground.

In the configuration shown in **Figure 1a**, a short between two adjacent pins can occur in many different ways. For each fully surrounded pin (such as the red pin in **Figure 1b**), there are at least eight possible ways for a short to occur.

A lengthy way to ensure that ATE can detect each possible short is to

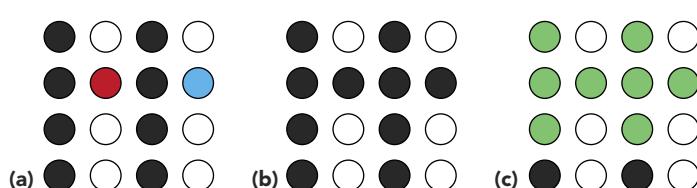
FIGURE 2. (a) This 16 I/O pin configuration has multiple supply (red) and ground (blue) I/O pins. (b) Ground potential (black) is established at the device ground I/O pins, and continuity is measured on all white (nonadjacent) and yellow (adjacent) pins.

force a ground potential across all the pink I/O pins and test the red I/O for continuity. Should a short occur, the tester would measure a ground voltage instead of a diode turn-on voltage on the red pin. This process would have to be repeated for the rest of the I/O pins to fully cover all the possibilities—clearly not an efficient option for high-pin-count devices.

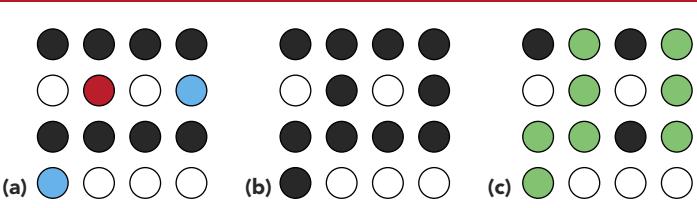
The black & white continuity test method—derived from a checkerboard pattern—is more efficient. To fully test every pin for opens or shorts to adjacent pins, the black & white test method requires only three continuity test iterations, regardless of the number of I/O pins available on the package. It is applicable to all matrix-type packages, includ-

ing micro SMD and BGA, and is even applicable to multi-row and multi-column in-line packages like high-pin-count leadless lead-frame packages (LLP).

The first continuity test iteration tests for opens on all of the pins in parallel. If any pin has an open circuit, it fails this test. In the second setup iteration (**Figure 1c**), the ATE drives black pins to ground to test the white pins. This test detects shorts occurring between diagonally or horizontally adjacent pins, but it will not detect shorts between vertically adjacent pins. The third iteration (**Figure 1d**) handles that final case.


Although the black & white test method attempts to reduce the number of iterations to three, situations inevitably arise that demand more iterations for complete coverage. One such situation arises because of supply and ground I/O pins. Another is mainly caused by the way the test hardware accesses the DUT (see “Test hardware design,” p. 42).

Multiple supplies and grounds


For supply pins, it’s common to use a supply-current test to guarantee continuity. Grounds, on the other hand, are commonly used as the reference for continuity testing. Some designs discourage

forcing grounds to a potential higher than other I/O pins, as this could reverse-bias some circuits and damage the die. Therefore, testing supply pins and grounds for opens and shorts requires some planning.

Consider the I/O configuration shown in **Figure 2a**, where the red I/O pins are supplies and the blue I/O pins are grounds. To test for continuity, you must first identify which I/O pins are supplies and grounds and then apply the black & white steps. First, test for opens on all pins in parallel. Then, force ground

FIGURE 3. (a) Black pins are grounded while white I/O pins are tested for continuity. Red and blue pins are effectively grounded because of internal die connections and are shown in black in (b). The green pins in (c) represent undetectable shorts.

FIGURE 4. (a) The horizontal ground configuration can detect vertical shorts. (b) This figure shows the effective configuration with commonly connected device supply and ground I/O pins. (c) Pins shown in green are undetectable for shorts in the vertical direction.

HOW PREPARED ARE YOU FOR NANOMETER DESIGN?

INTEGRATED SYSTEM DESIGN + DESIGN FOR MANUFACTURING + ELECTRONIC SYSTEM LEVEL DESIGN + FUNCTIONAL VERIFICATION

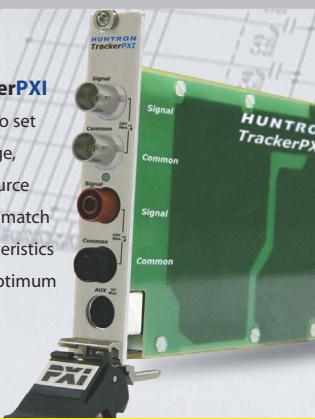
Design-for-Test | Prepare for the worst if you use traditional DFT methodologies at 130nm and below. The tests needed to detect all of the defects at smaller geometries can increase test data volumes by 5X or more, escalating test costs. TestKompress® is the proven embedded compression solution that's easily integrated into any standard design flow with no disruption to the core design. It supports all fault models and pattern types needed to detect nanometer defects up to 100X reduction in test data volume and time, for cost effective, high-quality tests with no tradeoffs. Register for a mini workshop at mentor.com/dft/wshop.

Mentor
Graphics[®]
THE EDA TECHNOLOGY LEADER

ACCESS

...test points with extreme accuracy using the Huntron Access Automated Probing Station.

- Interface to PXI instrumentation
- Reduce test time versus manual probing
- Reduce burden on engineering resources


EXPLORE

...the benefits of integrating Huntron power-off diagnostics into your PXI-based instrumentation.

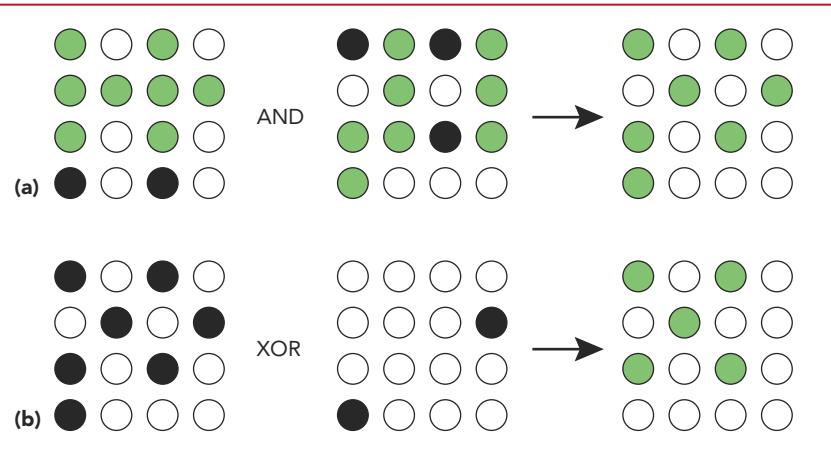
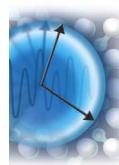
NEW!

Huntron TrackerPXI

enables the user to set the applied voltage, frequency and source resistance to best match the circuit characteristics and display the optimum Tracker signature.

DISCOVER

...the new Huntron Workstation 4 designed to bring a high level of efficiency and flexibility to PCB diagnostics. Take advantage of an updated interface, TrackerPXI and ProTrack system control, and integrated CAD linking.



NEW!

HUNTRON
Access Explore Discover

For more information, call or click, 800-426-9265 or www.huntron.com

ATE

FIGURE 5. (a) A logic AND function can determine I/O pins with at least one undetectable short to an adjacent I/O pin. (b) An XOR logical function determines the final set of pins with at least one undetectable short possibility to an adjacent pin.

pins to ground potential. Note that any short between ground pins and their adjacent pins (yellow) would cause the continuity test to fail (**Figure 2b**).

Next, establish ground potential on alternate columns and measure continuity on remaining pins (**Figure 3a**). As the device supplies and grounds are usually connected together on the die, the effective configuration would appear as shown in **Figure 3b**. This second iteration can detect all horizontal and diagonal shorts on all white I/O pins. For a few combi-

nations, however, detections are not possible. Horizontally and diagonally adjacent pins that cannot be detected for shorts are shown in green in **Figure 3c**.

The next iteration detects vertical shorts by switching the vertical black (grounded) I/O pins to horizontal (**Figure 4a**). For continuity testing, at least one device ground is set to ground potential. Again, because supplies and grounds on the die are commonly connected, the resultant configuration is as shown in **Figure 4b**. To check for non-testable pins,

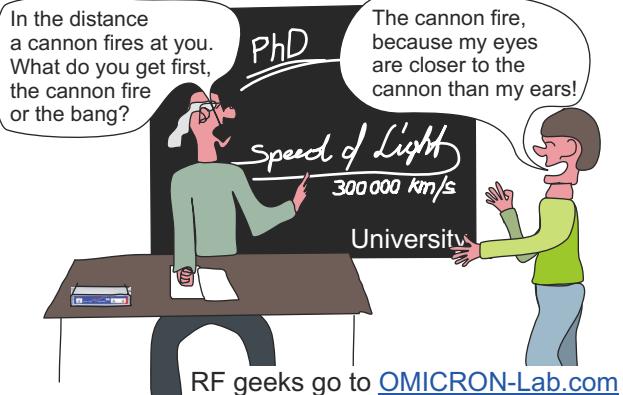
Test hardware design

For devices sensitive to noise, test engineers often place emphasis on ensuring that a board is designed for optimum functional and parametric performance, and they don't pay much attention to continuity testability. As a result, such boards might not have the flexibility to allow a thorough pin-to-pin test for both opens and shorts.

For efficient use of the black & white test method, you should have test hardware that can directly access every pin under test except for supply and ground pins. In the best scenario, you'll use relays to provide onboard isolation of supplies and grounds so that despite a die-level short on these I/O pins, you can still test for opens on individual pins.

In many situations, a test engineer needs to choose between having the ability to individually test every pin for opens and for adjacent shorts and having the ability to test for other performance characteristics that might override the risk associated with not being able to detect continuity failures up front. Some of the considerations might include:

- supply and ground noise,
- impedance mismatch,
- trace capacitance or inductance, and
- tester resource availability.

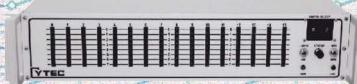

A lot of functional and parametric tests can indirectly screen out continuity defects. An assessment is usually required to determine the coverage at the end of the day.—C.H. Lim

Vector Network Analyzer

With Gain Phase Meter
10 Hz to 40 Mhz

Innovative
Accurate
Low Price

Visit OMICRON-Lab.com



RF geeks go to OMICRON-Lab.com

PC CONTROLLED SWITCHING SYSTEMS

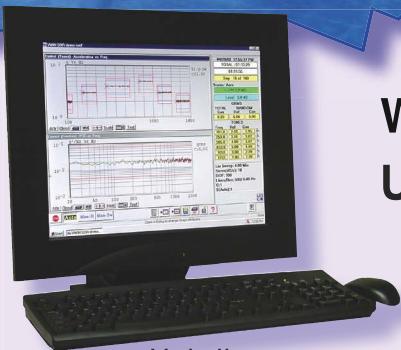
Systems for Automatic Test, Data Acquisition or Communications. Full five year warranty.

www.cytec-ate.com

General Purpose Switching System

- Numerous connector options available
- Manual Control with LCD keypad or LEDs optional

Large Switching Matrices


- Rack Mount • Desktop •
- Matrices • Multiplexers • Group Switches •
- VXI • VME • Microwave • Fiber Optic • Digital

Microvolts to 5000 Volts, picoamps to 10 Amps. DC to 18 GHz signals. Single pole through 25 pole. GPIB, RS232, Ethernet or TTL Controlled. OEM, Custom Systems and Software services available.

For more information and full catalog call 1-800-346-3117
or sales@cytec-ate.com
or www.cytec-ate.com

YTEC CORP.

Join the Club...

Vwin II

Why have **THOUSANDS** Selected
Unholtz-Dickie Vibration Controllers?

Comprehensive Vibration Test Control Library

...From Random Screening to Field Data Replication

Expert Technical Assistance

...Single Design & Manufacturing Center for Shakers/Amplifiers/Controllers
...Direct Contact with Systems Engineers

Safety & Security

...Extensive Checks Protect Test Specimen & Shaker

Versatility

...Interfaces to all Manufacturers' Shakers

Easy to Operate

...Fast Starting, Structured & Intuitive

High Reliability

...Full Factory Integration & Test
...Rugged Design with Robust Software

UNHOLTZ-DICKIE
CORP.

VIBRATION TEST EQUIPMENT

Trusted Supplier Since 1959
www.udco.com, info@udco.com
Tel: 203-265-3929

2048 x 1536 at 12fps
or
1280 x 1024 at 30fps
Camera, Board, Cable & Software

either at **\$995** complete system

SILICON VIDEO® 9M001 camera
1.3 megapixel, 10 bit, progressive scan, monochrome or color sensor with a maximum programmable resolution of 1280 x 1024 pixels.

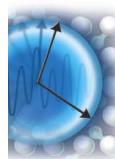
SILICON VIDEO® 9T001C color camera 3 megapixel, 10 bit, progressive scan, with a maximum programmable resolution of 2048 x 1536 pixels.

PIXCI® SI PCI Interface supplies power, programmable pixel clock, controls, and trigger input.

XCAP-Lite Software is WIN XP/2000/NT/ME/98/95 and Linux compatible and provides dedicated camera control including exposure, sub-windowing, sub-sampling, mirror/flip modes, color balance, and frame rate.

Optional XCAP-Ltd. and XCAP Std. software provides advanced capabilities.

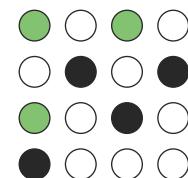
Cable supplies power, pixel clock, and control.


Complete imaging systems:
Computers, Cameras, Power Supplies, Lenses, Software, Lights, Frame Grabbers.

 EPIX

Buffalo Grove, IL USA
Tel - 847 465 1818
Fax - 847 465 1919

www.epixinc.com/tm


ATE

scan vertically for pins under test that do not fall next to a black pin in the same column. These non-testable pins are highlighted in green in **Figure 4c**.

Performing an AND operation (**Figure 5a**) on all green I/O pins in Figures 3c and 4c can check for any pin that cannot be tested for a short. All black and green pins are treated as logic 1, while all white pins are treated as logic 0. (Note that if two corresponding pins are black, the results of the AND operation can be ignored since both of these I/O pins could be detected for shorts in the first place. These I/O pins are redundant in this analysis.)

Finally, apply an exclusive-OR (XOR) operation between the output from the logic AND operation (**Figure 5b**) and the parallel continuity test configuration from Figure 2b. The final iteration to test

FIGURE 6. The final step is to ground all supply and ground pins and test for continuity on green I/O pins.

for pin-to-pin shorts is now to set the device supplies and grounds to ground potential and then test for continuity on the remaining pins with undetectable shorts (**Figure 6**).

Here, a four-iteration continuity test is sufficient to detect all possible shorts between two adjacent pins compared to 15 iterations for a thorough per-pin continuity check. You can download a table that summarizes these steps at the online version of this article at www.tmworld.com/archives. T&MW

C.H. Lim is a senior section test engineering manager for National Semiconductor in Melaka, Malaysia. He oversees IC testing for a variety of products, and he is involved in developing test manufacturing processes to support new products. Lim received his bachelor's degree in electrical and electronic engineering from the University of Leicester, UK.

Need a Cable Tester?

Call Cirris Systems today for a free, in-house demo. We'll help you decide which Cirris tester is right for you, then we'll send you a 7-day demo absolutely free of charge. All this at no cost or obligation—at least until you decide you can't live without it.

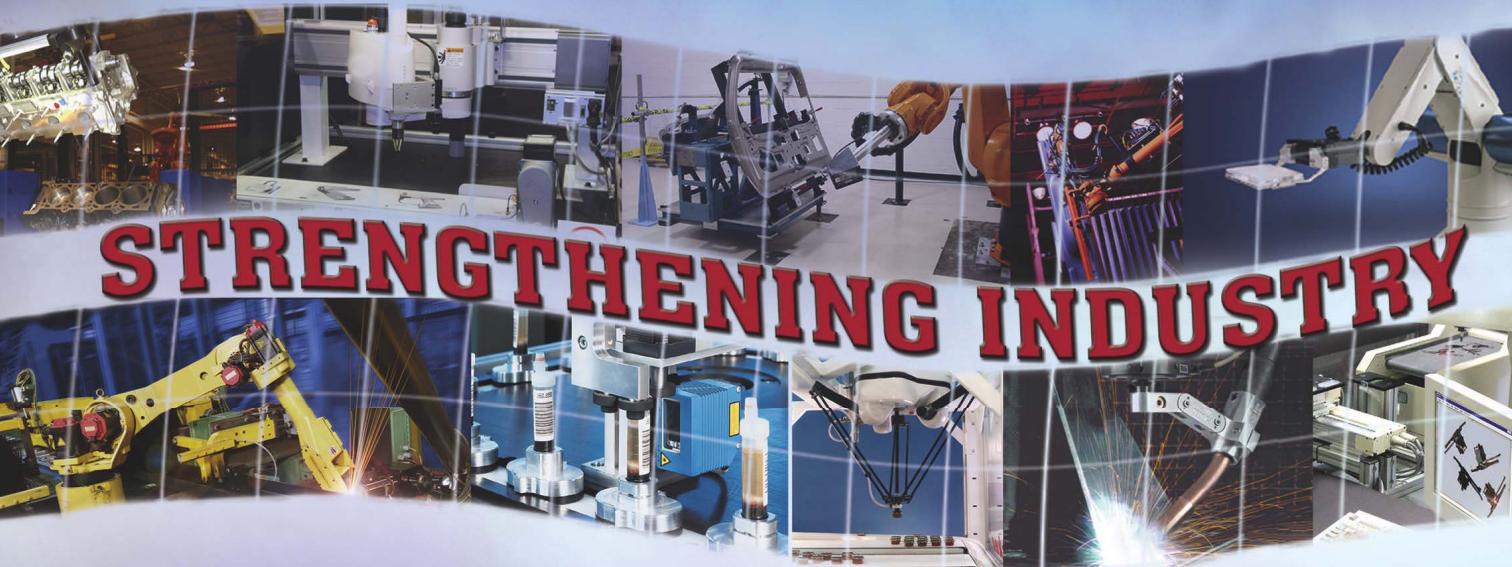
CALL today. Get a FREE demo tomorrow.

CIRRIS

Cable/Harness Testing Made Easy™

www.cirris.com

Phone: 801-973-4600
Toll-free: 800-441-9910
Fax: 801-973-4609
e-mail: info@cirris.com


The World's Leading Robotics & Vision Event

Strengthen your company with

- Leading Edge Products
- Practical Solutions
- Breakthrough Technologies
- Proven Expertise

...all under one roof!

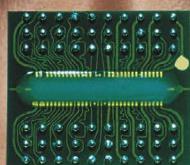
**INTERNATIONAL
ROBOTS
&
VISION
SHOW**

**SEPTEMBER 27-29, 2005
ROSEMONT (CHICAGO), ILLINOIS, USA**

- Find solutions for material handling, assembly, material removal, welding, painting/coating, gauging, guidance, identification, and inspection tasks
- Learn from industry leaders at in-depth conference sessions
- See how robots are applied in medical, consumer, military, and service industries in the Emerging Robots Pavilion
- Network with industry peers facing similar challenges

CO-LOCATED WITH

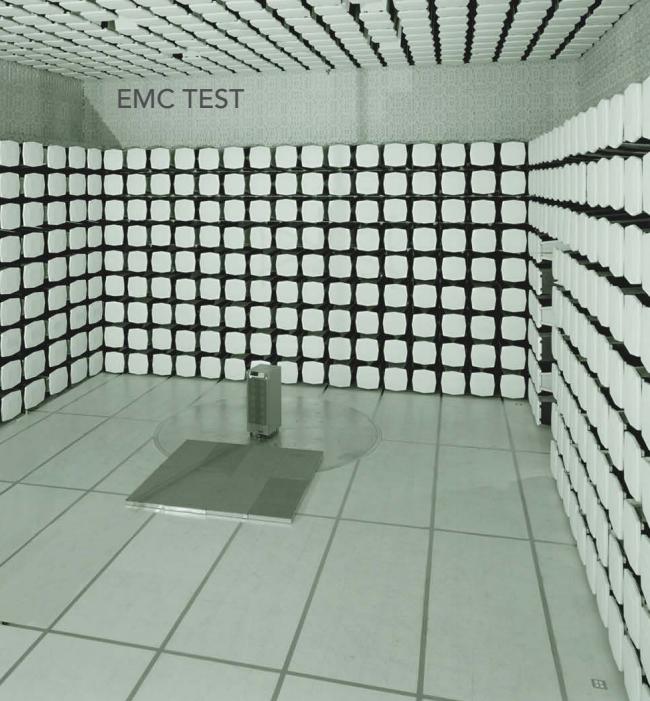
SPONSORED BY:


Held just once every two years...Register today!

For details and FREE show tickets, see www.robots-vision-show.info

There's no alternative

Save time by registering online!
www.productronica.com/ticket



® **PRODUCTRONICA**
15–18 NOV. 2005

The world's leading trade show for electronics production
16th International Trade Fair, New Munich Trade Fair Centre

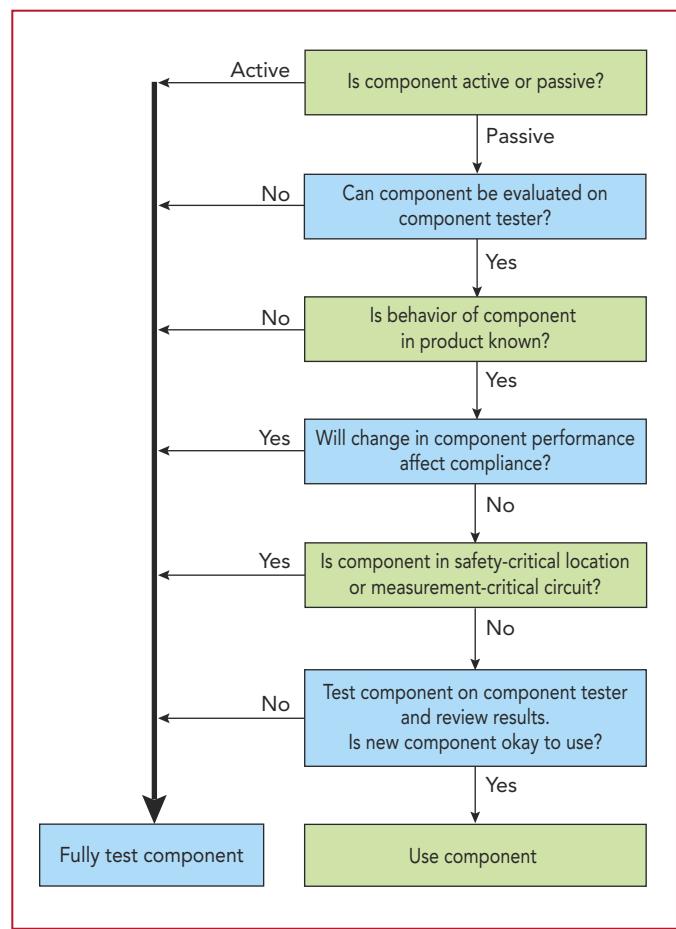
- PCB manufacturing
- Components manufacturing
- Microsystem and nanotechnology
- Component mount technology

- Test and measurement
- Production logistics
- Electronic manufacturing services

QUICK EMC SCREENING

SIMPLE COMPONENT TESTS MINIMIZE THE RISK OF NONCOMPLIANCE AND CUT EVALUATION TIME BY 70%.

MICHAEL TAYLOR, HACH CO.


Market pressures push manufacturers to cut manufacturing costs, which forces engineers to look for low-cost active and passive alternative components to use in mature products. Unfortunately, replacing a component may come with a price—it may force a product out of EMC compliance.

A component change typically necessitates two to five days of EMC emissions and immunity testing. When our compliance group became overwhelmed with the volume of component change requests, we knew that we needed a new testing approach. We now evaluate a component's characteristics and its function in the circuit before installing it into a product. The result: We cut component evaluation time by more than 70%.

In our method, we separate active and passive components and then use a two-tiered approach to evaluate the components for their effects on EMC compliance. At tier 1, we review a component's parametric values and its function in a circuit. From this analysis, we can show that certain electrical parameters have a significant effect on compliance, while others have little or no effect.

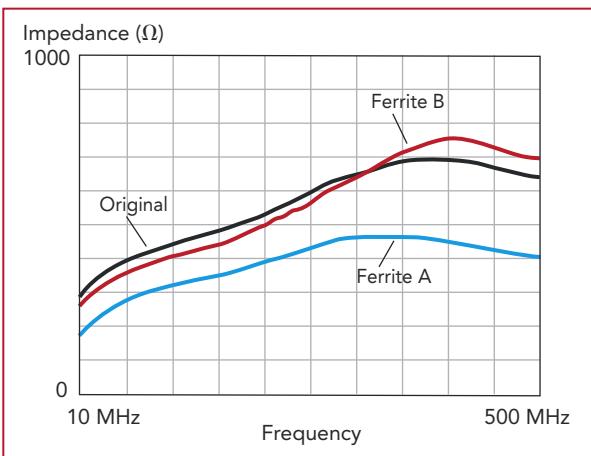
Figure 1 shows our evaluation process. If we determine that a part needs evaluation, we test it on an Agilent Technologies 4395A network analyzer. We measure impedance magnitude ($|Z|$), capacitance (C), phase (θ), dissipation factor (D), inductance (L), and quality factor (Q) as functions of frequency.

From a $|Z|$ measurement, we can find a component's resonant frequency. If a low-cost replacement component such as a capacitor has a lower resonant frequency than an existing component, it won't suppress noise well enough for our product to meet compliance specifications, and we

FIGURE 1. Using this evaluation procedure, we determine whether a component meets all review criteria for replacing an existing component.

reject it. If the component's performance parameters are equal to or better than the original component in its intended function, then we conclude that the risk of using the new component is acceptably low.

Measured results


To illustrate our method, we used our tier-1 process to evaluate two possible replacements for a ferrite. When correctly applied in a circuit, ferrites can reduce emissions—the critical parameter is impedance versus frequency. **Figure 2** shows the impedance of the two low-cost replacements compared to that of the original one. The plot shows that low-cost ferrite A (blue trace) produces an impedance below the minimum required by this circuit. Ferrite B (red trace) from another supplier, however, has an impedance somewhat greater than the existing component at high frequencies for noise suppression. Ferrite B will meet the requirements for the circuit in question. Ferrite A won't.

Using the tier-1 process, we reduced the evaluation time from hours to minutes. Our old method of a full compliance test required us to bring a finished product to our anechoic chamber for emissions testing. It required at least an hour to build a circuit board, install it in a product, verify operation, and deliver the product to the compliance engineering group. We then needed at least another hour to perform a radiated-emissions test.

Compare that to the 10 min we need to perform the parametric measurement with the component analyzer. We save 1 hr, 50 min. Multiply this over 10 components per week, and the labor savings exceed one person-day each week. Our new method has proven invaluable in rapidly separating the acceptable replacement components from components that will likely cause problems.

Modified immunity test

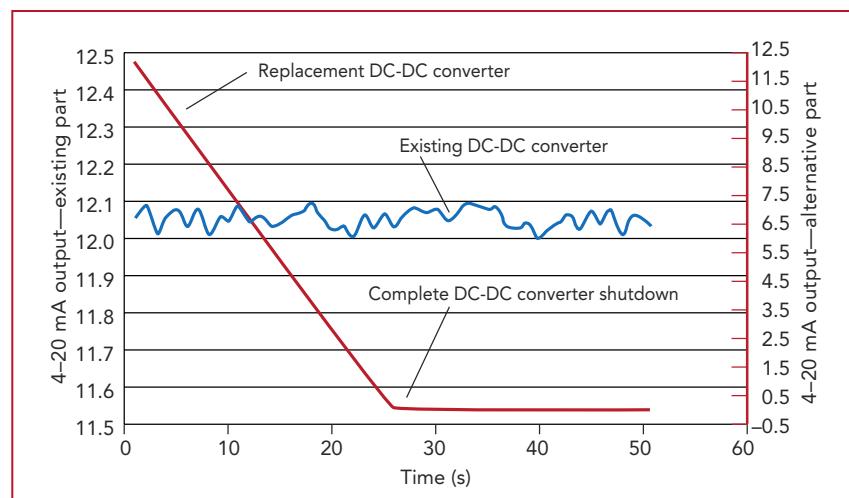
In cases where a component evaluation is insufficient to tell us whether a low-cost component will create compliance issues, we turn to tier-2, a modification of our diagnostic immunity testing procedure. Tier-2 testing isn't a replacement for full

FIGURE 2. Low-cost ferrite A (blue) failed to perform as well as an existing component, but ferrite B (red) performed better than the original at high frequencies.

compliance certification, but it quickly identifies susceptibility issues that result from a component substitution.

The tier-2 procedure compares test results from a modified product to an existing product. To make the comparison, we need an immunity model of the existing product, which we developed during the product's full compliance certification testing. We store each model's compliance test data in a technical information file, a derivative of the technical construction file formerly used for EU competent-body certification.

The tier-2 method modifies some of the immunity tests to minimize testing


FOR MORE INFORMATION
★ On EMC test, visit
WWW.TMWORLD.COM/EMC

time. We currently use the tier-2 method for radiated immunity, conducted immunity, electrical fast transient, and surge tests.

We base our modified radiated and conducted immunity tests on a circuit's ability to respond to impinging RF energy. The response may be difficult to identify because of software averaging, but given repeated exposure, the response will become detectable. EMC standards EN 61000-4-3 (radiated immunity) and EN 61000-4-6 (conducted immunity) for CE compliance require that a product be exposed to RF energy for at least one complete product-operation cycle for each frequency step, called the dwell time.

Unfortunately, dwell time can take up to 20 min for some of our products because of long operational cycles. To complete a cycle, some analytical instruments must wait for a chemical reaction in a sample to take place, which can take up to 20 min. We can, however, reduce the product's dwell time for compliance testing by using pre-reacted samples and special test firmware in the instrument under test. Even so, some products can still take as long as 15 min to complete an operation cycle.

(continued)

FIGURE 3. A replacement DC-DC converter failed a swept-frequency immunity test. Unlike the original part, the replacement part shut down during a test.

Remote AC or DC Power Distribution...

Simulate real world testing of equipment shutdown and power cycling

AC Power Distribution

Sequence your power outlets to prevent inrush current from tripping circuit protection and bringing down critical equipment. Our AC SMARTstart® Jr. power distribution units allow remote management of individual power outlets or groups of power outlets.

DC Power Distribution

+24 VDC and -48 VDC products provide low profile and lightweight power distribution and circuit protection. These units sequence power on or off, and feature auto reset circuit breakers and real battery voltage status.

Ideal for automated test racks in ATCA, industrial and manufacturing applications

Making a site visit to reboot your critical electronic equipment is often inconvenient and costly. Our AC or DC power distribution units provide you with highly reliable and flexible remote control over the power to your equipment. Allowing you to reboot from anywhere, anytime.

If you're an EF&I engineer looking to validate hardware performance and set-up, SMARTstart is the perfect tool for you.

SPECTRUM CONTROL INC.
A Control Products and Systems Company

Call 814-474-2207
or visit us online @ www.specpower.com

27th Annual **EOS/ESD** Symposium and Exhibits

Gain information, solutions, research, and technology on issues ranging from semi-conductors to finished assembly and from cleanrooms to the factory floor.

Tutorials	Increase your understanding with focused tutorials covering everything from ESD basics to on-chip protection.
Technical Sessions	Learn from technical papers focused on current technological issues, presented by industry professionals from around the world.
Workshops	Take advantage of interactive sessions with in-depth discussion and exchange of ideas and expertise.
Exhibits	Find solutions with products and services on display in a broad spectrum of ESD control, testing, and analysis.

Electrostatic Discharge Association

Awareness . . . Solutions . . . Standards . . . Education

September 11-16, 2005

Marriott Anaheim, Anaheim, California, USA

www.esda.org
info@esda.org

phone: 315-339-6937
fax: 315-339-6793

7900 Turin Rd., Bldg. 3
Rome, NY 13440 USA

Sponsored by the ESD Association
in cooperation with the IEEE

Technically co-sponsored by
the Electron Devices Society

Even if a product's cycle time is short, say 20 s, a radiated immunity test can still take hours because we must subject the product to RF energy at many frequencies. The current radiated immunity test standard requires testing from 80 MHz to 1000 MHz at 1% frequency steps on all four sides of the equipment under test (EUT) at both horizontal and vertical polarities. If we add all the frequency steps, sides, and polarities, we must complete 2040 steps (255 frequencies x 4 sides x 2 polarities). If each step takes 20 s, then 2040 steps will take 40,800 s, or 11.3 hrs of test time.

For conducted immunity tests, the frequency test range is 0.150 MHz to 80 MHz in 1% frequency steps, or 633 frequency steps. At 20 s/step, that adds up to 12,660 s, or 3.5 hrs. Thus, we need 14.8 hrs—nearly two full work days—to complete both the radiated and conducted immunity tests for a full compliance test.

Our tier-2 process shortens this time considerably. Instead of waiting for the

product to complete an operational cycle for each frequency step, we sweep through the *entire* frequency range in 5 s to 20 s. We make up to 100 frequency sweeps for each operation cycle of the EUT.

Obviously, this method would not be acceptable for full compliance testing, but it is fine for evaluating a product's immunity. If we don't detect a response from the sweeps, then we conclude that switching to a low-cost component won't cause the product to fail a full compliance test. If we do detect a response, then we subject the product to full compliance testing to determine the exact response frequency.

To understand the time savings, assume a mean of 50 frequency sweeps at 5 s per sweep. We would thus need 250 s (4.16 min) to test each of a product's four sides at both horizontal and vertical polarities—a total of 33.3 min per product.

For the conducted immunity test, we need just one frequency sweep test at 4.16 min. Thus, we need a total of 37.5

min (0.62 hr) to perform both radiated and conducted immunity tests—a savings of 14.18 hrs (1.78 work days) over the 14.8 hrs needed for a full compliance test.

To perform a frequency sweep, we use an RF signal generator to drive a power amplifier and an antenna. We measure the field strength with an isotropic field probe. The probe's controller has an analog output that we feed into the amplifier's automatic gain control input.

Further time savings

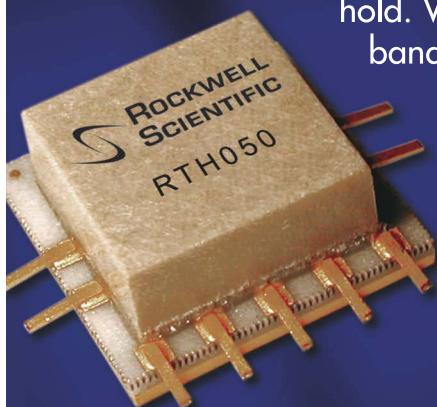

We can achieve similar time savings for electrical fast-transient and surge testing by subjecting the product to the most severe interference levels only. With our products, we have data to indicate that if the product passes under the most stressful conditions, it will pass under lower stress levels. If we detect a failure, we can analyze it by performing a full immunity test. At this level of evaluation, we're looking for a simple yes/no result. That is, does the product containing the low-cost component respond differently from the original instrument?

Figure 3 shows the results of a swept test of an existing and a proposed alternate DC-DC converter. We use the converter to power an instrument controller's isolated 4–20-mA output. The original component showed no meaningful response when subjected to a sweep. The proposed replacement however, not only lost regulation, it shut down halfway through the test. The converter regained regulation after testing. Clearly, the substitute component is not a suitable replacement.

If you want to try a method similar to the one we use, you first need a compliance history of your product. That is, make sure you have a full emissions and susceptibility profile to compare the test results against. Without a known set of behavior, you can overlook a minor response. With a known product profile, you can carefully watch for minor anomalies during rapid testing. If in doubt, perform a full compliance test. **T&MW**

15GHz Direct Down Conversion

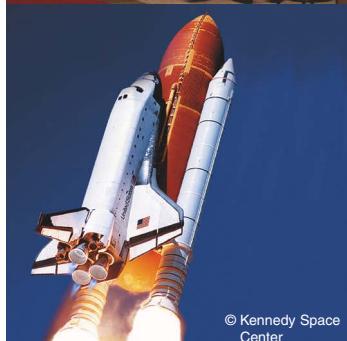
Rockwell Scientific introduces the RTH050, its newest dual track and hold. With 15GHz small signal bandwidth, 1GS/s operation and longer hold time, it enables capture of wideband signals at multi GHz carrier frequencies with greater flexibility than before.

**ROCKWELL
SCIENTIFIC**

Delivering the Winning Technical Edge

For more information please contact
Ron Latreille, rlatreille@rwsc.com,
(805) 373-4686
or visit our website at:
www.rockwellscientific.com/highspeed

"Go digital with your RF applications"


Michael Taylor, NCE, is principal EMC compliance engineer at Hach Co., the Environmental Water Quality Division of Danaher Corp., based in Loveland, CO. He has degrees in mathematics and electrical engineering and has worked in the EMC field for more than 30 years.

Innovation: Creating and Sustaining Positive Change

© SeaWorld

© Kennedy Space Center

AUTOTESTCON 2005

September 26-29, 2005

Renaissance Orlando Resort at
SeaWorld, Orlando, Florida

<http://www.autotestcon.com>

IEEE AUTOTESTCON is the premier annual conference for automatic test, diagnostics and related technologies for military, aerospace and automotive applications. This year — the 41st anniversary of bringing together researchers and practitioners to share the latest innovations in systems readiness — IEEE AUTOTESTCON will offer you the opportunity to network in one of the most complete convention resort destinations in the country.

The technical program will begin Tuesday with a keynote address and plenary session followed by multiple technical tracks through Thursday. The 42,000 square foot exhibit area will offer opportunities to view the latest technology and exciting new products. It's about creating the future — what you need to know for tomorrow, today!

**Reasons to make
reservations now
for AUTOTESTCON
2005:**

**Meet with exhibitors
and other test
professionals**

**See the latest ATE
innovations**

**Learn from a variety
of top technical
specialists**

**Celebrate the
achievements of
Systems Readiness
Technology**

**Be entertained at the
SeaWorld Evening Gala**

**Visit the greatest
collection of theme
parks in the world**

**Enjoy a challenging
round at the annual
golf tournament**

**Take advantage of
special spouse and
family programs**

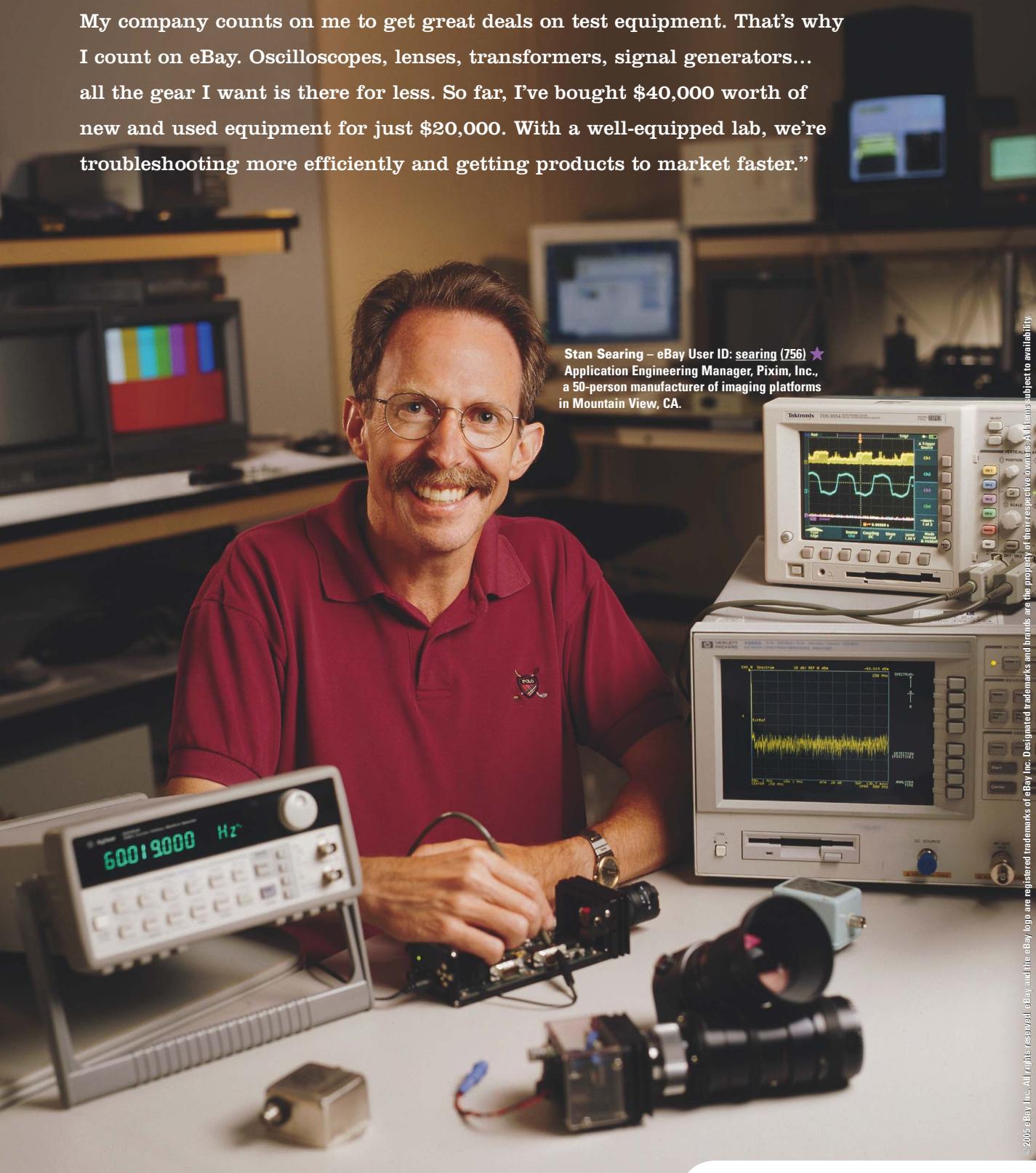
**Tour restricted areas
at the Kennedy Space
Center**

Sponsored by:

IEEE Aerospace & Electronic Systems Society

IEEE Instrumentation & Measurement Society

IEEE Orlando Section


“Lower costs, higher output—it’s easy to measure the value of eBay.

My company counts on me to get great deals on test equipment. That’s why I count on eBay. Oscilloscopes, lenses, transformers, signal generators... all the gear I want is there for less. So far, I’ve bought \$40,000 worth of new and used equipment for just \$20,000. With a well-equipped lab, we’re troubleshooting more efficiently and getting products to market faster.”

Stan Searing – eBay User ID: **searing (756)** ★

Application Engineering Manager, Pixim, Inc.,
a 50-person manufacturer of imaging platforms
in Mountain View, CA.

© 2005 eBay, Inc. All rights reserved. eBay and the eBay logo are registered trademarks of eBay, Inc. Designated trademarks and brands are the property of their respective owners. All items subject to availability.

Every day on eBay, great deals are made, new customers are found and business dreams fulfilled. Make eBay a part of your success story.

www.ebaybusiness.com

eBay
business

Excite and analyze serial buses

Serial buses such as PCI Express and SerialATA are pushing bit rates beyond 3 GHz, making their signals look like microwaves traveling through copper traces. To test such high-speed signals, Agilent Technologies has introduced a 7-GHz pulse generator and added S-parameter analysis to its DCA-J sampling scopes.

The 81141A (\$88,000, pictured) lets you produce PRBS serial data streams, clock signals, pulses, and real-world data to test receivers and data channels. It produces PRBS streams at up to $2^{31}-1$ bits, and it lets you adjust duty cycles in clock signals. You can add jitter by connecting a function generator to the 81141A; the unit will modulate the signal onto its output pulses. The 81141A lets you select from return-to-zero (RZ), non-return-to-zero (NRZ), and return-to-one (R1) data patterns.

To test transmitters and data channels, Agilent has added an S-parameter option (\$6000) to its DCA-J line of sampling scopes. The option, which you can download and install, lets you analyze pulsed signals in the frequency domain. *Agilent Technologies*, www.agilent.com.

Code Composer Studio gains rewind feature

Texas Instruments has announced the release of the Platinum Edition of its Code Composer Studio integrated development environment (IDE). The Platinum Edition makes code debugging less frustrating by introducing two new features that can save developers significant time when tracking down pervasive bugs: The CCStudio Rewind feature allows programmers to back-step through their source code with a single keystroke, while the new Connect/Disconnect feature enables developers to "hot swap" a target board in seconds to eliminate hardware suspects during debug.

To address the many DSP applications that are growing to hundreds of thousands of lines of code with onboard support for multiple processors, CCStudio Platinum Edition is a fully merged IDE supporting all TI platforms, including the TMS320C6000 DSP, TMS320C5000 DSP, TMS320C2000 DSP, and OMAP platforms. Other features include a component manager that lets users upgrade their IDE to take advantage of new features and bug fixes while locking down

on a specific compiler and DSP/BIOS software kernel foundation version. The new component manager also lets the developer install and evaluate a new compiler or DSP/BIOS kernel version before committing to it.

Price: \$3600, including 15 months of update subscription service. A free 120-day evaluation version is available on CD-ROM. *Texas Instruments*, www.ti.com/ccstudiotioplatinumpr.

Scanflex boundary-scan products debut

Goepel electronic has announced the availability of several products for extended boundary-scan implementations based on its new Scanflex architecture. This wave of Scanflex products includes the SFX/PCI1149 PCI-based Scanflex boundary-scan controllers, which operate at 20, 50, or 80 MHz; Scanflex TAP transceivers, which come in 2-, 4-, 6-, and 8-TAP standard configurations as well as 2- and 4-TAP compact versions for rugged environments; and the SFX5296 Scanflex I/O module, which provides 96 parallel I/O channels.

The SFX controllers are upgradeable on the fly while residing within a host PC. They include compensation for signal propagation delay and support dynamic data synchronization of serial and parallel vectors. The TAP transceivers include resources such as 32 dynamic, parallel digital I/O channels, two analog I/O channels, three static digital I/O channels, and trigger lines. Furthermore, they feature removable TAP Interface Cards (TICs). The first available TIC—a single-ended interface with line drivers supporting TAP cable up to 1.5 m long—provides programmability for input threshold, output voltage, input and output impedance, TCK frequency, delay compensation, a relay-controlled power signal, and read-back capability of TAP output signals.

For the I/O module, each of the 96 I/O channels is individually configurable as input, output, bidirectional, or high impedance. Users can program I/O voltages in groups of 32 channels. The SFX controller, I/O modules, TAP transceiver, and TIC can be combined in any configuration with distances between controller and TAP transceiver extending to 5 m. Scanflex works with the company's System Cascon boundary-scan software environment (version 4.2.1 and up).

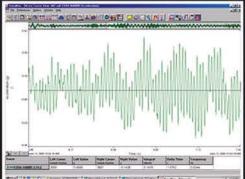
Starting price: \$3500. *Goepel electronic*, www.goepel.com.

TDR hand probes

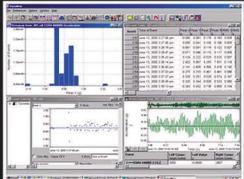
Able to accommodate a wide range of differential line spacings on PCBs, the P80318 and P80318X 18-GHz TDR hand probes greatly improve differential TDR measurement integrity for electrical serial data signals. Each probe can resolve small spatial features used to determine

the differential impedance and if differential lines are matched in length. Probe pitch is continuously adjustable from 0.5 mm to 4.2 mm (signal to signal). The P8018 and P80318X are functionally identical, but the P80318X comes with a second probe body. Base price: \$3990. Tektronix, www.tek.com.

Compact Data Recorders For Capturing Dynamic Environments


Measures and Records:

- Tri-axial Acceleration
- Shock / Drop / Impact
- Vibration / Stress / Strain
- Angular Rates
- Roll / Pitch / Yaw
- Atmospheric Conditions
- Temperature / Humidity
- Intrinsic Safety
- Flight Qualified
- Digitization to 50kHz / Ch
- Onboard Memory to 108MB+
- Also used in
- Atm Pressure
- Non-destructive and Destructive Missile Testing


Rugged...

Proven...

Tested...

Instrumented
Sensor
Technology

4704 Moore Street • Okemos MI 48864-1722 USA • www.isthq.com
Tel: 517-349-8487 • Fax: 517-349-8469 • email: info@isthq.com

T1/E1 analyzer software

The T1/E1 Analysis Suite provides comprehensive analysis and emulation capabilities for voiceband and signaling protocol analysis. New and enhanced applications in Version 4.86 include delay attenuate time-slots with very low echo path delays (for HD boards only), TRAU traffic playback, PPP protocol analysis, UMTS protocol analysis, remote voiceband activity detector, and instant client analysis. GL Communications, www.gl.com.

Isolated data acquisition

Members of the DI-718B series of data-acquisition instruments employ integrated isolated amplifiers that record data to removable Secure Digital (SD) memory cards. Depend-

ing on the model, the 14-bit, eight-channel instruments either stream data to a PC or collect data as a stand-alone datalogger. Each type is available with either a USB or Ethernet interface. All DI-718B products have eight analog input channels, each of which is capable of accepting a DI-8B amplifier module. Price range: \$595 to \$895. DATAQ Instruments, www.dataq.com.

Development tool

National Instruments' LabView Embedded Development Module extends LabView to any 32-bit embedded processor, providing a graphical approach to algorithm design, simulation, prototyping, and deployment of custom designs for embedded systems. The module includes more than 400 analysis functions for signal processing, linear algebra, curve fitting, statistics, and calculus. What's more, it features a framework for integrating I/O drivers and board support packages for taking advantage of specific processors with LabView. National Instruments, www.ni.com.

LEMO® Excellence.

From concept to connection.

Cable test equipment adapter

Manufactured in groups of 10 pins, the EasyMate interface connector adapts DIT-MCO cable and harness test systems to reduce wasted nodes and minimize adapter cable complexity. The connector's low contact resistance enables a high number of cycles without degradation. It also offers low current-carrying capability, smooth wiping action during engagement, and all-metal construction to resist damage due to forceful handling and repetitive movements.

180-W power supply

Delivering 9.6 W/in.³ in a 3x5-in. footprint, the NV-180 single-output AC/DC power supply achieves up to 90% efficiency for use in high-density medical, process control, and test and measurement equipment. It is initially available with outputs of 5 V, 12 V, and 24 V and with currents of up to 25 A. The unit also offers an optional high-power standby output rated at 5 V/2 A, remote on/off, and power good signal. The NV-180 carries EN60601 medical approval combined with EN55022 Level B conducted emissions, as well as EN61010 and EN60950 approvals. Price: \$89 (100 units). *Lambda*, www.lambdapower.com.

Wireless strain-gage system

The Model i400 wireless telemetry and strain-gage sensor system com-

prises two 915-MHz digital telemetry modules. The sensor end module includes an embedded SensorData i200 AC strain-gage conditioner and a 16-bit sigma-delta ADC. The receiver end

an embedded SensorData i200 AC strain-gage conditioner and a 16-bit sigma-delta ADC. The receiver end

TEST & MEASUREMENT WORLD

*LEMO is committed
to excellence in everything
we do, from designing custom connectors
to full cable assemblies – even for your most
challenging projects.*

LEMO Hermaphroditic Connectors

The LEMO S Series connector features hermaphroditic half-moon inserts for easy blind mating, making it an excellent choice for test and measurement and industrial control environments. Our precision machine-screwed contacts ensure low wear and tear, while gold plating provides superior electrical performance. When you demand excellence, choose LEMO.

- Both hermaphroditic and concentric insert styles available
- Dense multi-contact and hybrid configurations save panel space and connection time
- Push-pull self-latching system offers unparalleled ease of use while preventing damage to contacts
- Up to 5000 mating cycles - the most reliable in the industry

www.LEMOusa.com

LEMO USA, Inc. 800-444-5366
© 2005 LEMO USA, Inc. All rights reserved. LEMO is
a registered trademark of INTERLEMO HOLDING SA

LEMO®

Need measurement accuracy? Need testing repeatability? Need Gore!

Proven solutions for your high data rate, RF, and microwave applications through 110 GHz.

GORE™ Ultra High Density Interconnect Systems

GORE™ Microwave Interconnects

GORE™ PHASEFLEX® Microwave Test Assemblies

GORE™ VNA Microwave Test Assemblies

W. L. Gore & Associates

North America:

1 (800) 445-4673

International:

1 (302) 292-5100

Europe:

+49/91 44/6010

+44/1382-561511

gore.com

module couples through its on-board RS-232 port to the serial port of a PC or PLC. A switch-selectable analog output signal of ± 5 VDC or ± 10 VDC is standard on the receiver module. The i400 is compatible with any SensorData rotating torque sensor, non-rotating torque sensor, or any device supplied by SensorData with a strain-gage bridge sensing element. PC-compatible software is included. *SensorData Technologies*, www.sensordata.com.

IC test system

Boasting a compact 11x14-in. footprint, the IC-100 general-purpose IC test system is small enough to sit on top of most handlers and probers, yet powerful enough to allow for high-throughput end-of-line testing. The system offers a choice of three different standard test heads for testing analog and discrete ICs up to 128 pins. Test program development is done using an intuitive fill-in-the-blanks spreadsheet that can be written and compiled offline. Its streamlined software also minimizes test costs and reduces test times. Most internal calculations are precompiled before actually testing the device, and many setups and housekeeping tasks are performed during the prober/handler cycle time. Base price: \$30,000. Delivery: 6 to 8 weeks. *Production-Line Testers*, www.productionlinetesters.com.

CompactPCI/PXI DAC

Built on a single-width, 6U CompactPCI/PXI module, the CP266 digital-to-analog converter card supplies 64 analog-output channels with 16-bit resolution and ± 10 -V full-scale output range. You can set the power-up state of the analog outputs to independent user-defined values to provide non-zero voltage

▷ Visit www.tmworld.com/webproducts for Web exclusive product writeups

PROFESSIONAL TESTING

- Creative Solutions • Personalized Service
- Knowledgeable and Experienced Staff

EVERYTHING YOU NEED IN ONE TEST LAB

Specializing in world-wide regulatory and reliability testing, consulting and design assistance.

Our services include:

- EMC Testing
 - Worldwide Compliance, FCC, CE, MIL-STD, DO-160, SAE
- Product Safety
 - UL
 - CSA
 - CE-Low Voltage Directive
- Test Plan Development
- Telecom
- Calibration
- NEBS
- Consulting, Design Assistance, and Troubleshooting
- Environmental Testing
 - MIL-STD, DO-160
 - Temperature/Humidity
 - Vibration
 - Shock
 - Mechanical Life Test
 - Dust
 - Water Protection
 - Altitude
 - Salt Fog/Corrosion
- Highly Accelerated Life Testing (HALT) and Highly Accelerated Stress Screening (HASS)
- MTBF Calculations

For more information,
call 1-800-695-1077
info@ptitest.com • www.ptitest.com

1601 FM 1460 Suite B • Round Rock, TX 78664
Tel: 512-244-3371 • Fax: 512-244-1846

settings on application of power. The channel update rate is 2 ms, and each output is accurate to within ± 1 mV. Paired output signals eliminate ground offset effects. Typical applications include automotive test cells, industrial control, and automated test equipment. Price: \$2750. Delivery: 4 to 6 weeks. *KineticSystems*, www.kscorp.com.

High-speed vision sensor

Combining fast sensing speed with high resolution, the PresencePLUS P4 Edge 1.3-Mpixel vision sensor performs up to 1200 inspections/min at a cost of under \$2000. The P4 Edge uses a 1280x1024-pixel imager to capture minute details of multiple features at ranges from a few inches to several feet, depending on the lens. You can use the compact, self-contained vision sensor for precision inspections, error-proofing, and counting stamped metal

parts, as well as for validating the location of objects such as labels or components of an assembly. The P4 Edge offers a built-in Ethernet connection, RS-232 port, or four discrete input/outputs, along with either an in-line or right-angle lens. Price: \$1995. *Banner Engineering*, www.bannerengineering.com.

25 ns insertion delay • 10 MHz trigger rate • < 10 ps basic jitter

MODEL P400 4-CHANNEL DIGITAL DELAY/PULSE GENERATOR

Four full delay-and-width pulse outputs

DDS internal trigger generator

1 ps time resolution

Standard TCXO, RS232

Optional OCXO timebase
and Ethernet capability

Onboard help

HIGHLAND TECHNOLOGY

www.highlandtechnology.com 415 753-5814 800 473-4418

225 Wyman St., Waltham, MA 02454
 781-734-8423 Fax: 781-734-8070
Sales e-mail: tmwsales@reedbusiness.com
Editorial e-mail: tmw@reedbusiness.com
Web: www.tmwworld.com

BUSINESS STAFF

Publisher: Russell E. Pratt
 rpratt@reedbusiness.com

Marketing Manager: Jennifer Abdulla

Assistant to the Publisher: Darlene Fisher

Market Research Director: Rhonda McGee

Group Production Director: Dorothy Buchholz

Production Manager: Joshua Levin-Epstein

Customer Contracts Coordinator: Nancy McDermott

ADVERTISING SALES

New England, New York City, & Long Island

Steve Rooney, Needham, MA. 781-444-4131

steve@equinoxmediagroup.com

Midwest, Southeast, NY (except NYC & LI), NJ, PA, MD, DE, & Canada:

Scott Burrows, Stow, OH. 216-272-2280

sburrows@reedbusiness.com

CA, CO, TX, & Northwest:

Lori Kehoe, San Mateo, CA. 650-357-8609

lkehoe@reedbusiness.com

Classified and Test Services Directory Ads & Account Development Nationwide:

Kathy McNamara, 781-734-8421

kathy.mcnamara@reedbusiness.com

Europe:

John Waddell, European Sales Manager, Reed Electronics Group, London, England.

44-181-312-4696 Fax: 44-181-312-1078

jwadds@compuseve.com

Benelux, United Kingdom, Ireland, Scandinavia:

John Waddell, London, England. 44-181-312-4696

Germany, Austria: Adela Ploner, Dachau, Germany. 49-8131-366992-0

Switzerland: Gino Barella, Zurich-Glattbrugg,

Switzerland. 41-1-880-35-45

Italy: Roberto Laureri, Milano, Italy. 39-02-236-2500

France, Spain, Portugal: Alain Faure, Issy-les-Moulineaux, France. 33-1-55-95-95-11

Israel: Asa Talbar, Tel Aviv, Israel. Fax: 972-3-562-9565

Asia:

Hong Kong: Simon Lee, 852-2965-1526

Japan: Ken Mikami, Tokyo, Japan. 81-3-3402-0028

Korea: M.S. Kim, Seoul, South Korea. 82-02-752-4392

Taiwan: Charles Yang, Taichung, Taiwan ROC.

886-4-2322-3633

Singapore & Malaysia: Wai Chun Chen, Singapore.

65-654411151

VOL. 25, NO. 7

Subscription Policy

Test & Measurement World® (ISSN 0744-1657) (GST Reg. # 123397457, C.P.C. Int'l Pub Mail #0360155) is published monthly except January by Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Reed Business Information, a division of Reed Elsevier, is located at 360 Park Avenue, New York, NY 10010. Jim Casella, CEO. Periodicals postage paid at Littleton, CO 80126, and additional mailing offices. Circulation records are maintained at Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Telephone: 800-446-6551. **POSTMASTER:** Send address changes to *Test & Measurement World®*, P.O. Box 7500, Highlands Ranch, CO 80163-7500.

For Canada: Publications Mail Agreement No. 40685520. Return undeliverable Canadian addresses to: Deutsche Post, 4960-2 Walker Road, Windsor, ON N9A 6J3. Email: submssn@reedbusiness.com. *Test & Measurement World®* copyright 2005 by Reed Elsevier Inc. Rates for non-qualified one-year subscriptions, including all issues: US, \$93.99; Canada, \$137.90 (includes 7% GST, GST# 123397457); Mexico, \$136.50; Foreign surface, \$172.50; Foreign air, \$195.90. Except for special issues where price changes are indicated, single copies are available for \$10.00 US and \$15.00 foreign. Buyer's Guide Issue (July) is \$29.95 plus \$3.00 shipping and handling (US only); non-US buyers: call or fax for price. Please address all subscription mail to *Test & Measurement World®* 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. *Test & Measurement World®* is a registered trademark of Reed Properties Inc., used under license. (Printed in U.S.A.)

Reed Electronics Group

ADVERTISER INDEX

ADVERTISER

A Comm Electronics	58
Advantech	2
Amplifier Research	25
Automation Imaging Council	45
Avalon Equipment	58
Capital Equipment	59
Circuit Specialists	59
Cirris Systems	44
Cytec	43
Dalsa	30
Data I O	16
DME	51
DVT	37
ebay	52
Edmund Industrial Optics	C-2
Epix	44
ESD Association	49
Highland Technology	57
HUBER & SUHNER	6
Huntron Instruments	42
Instrumented Sensor Technology	54
Keithley Instruments	4
Labx	58
Lemo USA	55
Madell	58
Measurement Computing	19, 59
Mentor Graphics	41
Messe Muenchen	46
Micro Lambda	38
National Instruments	10, 29, C-4
Noise Com	11
Omega Engineering	1, 58
Omicron	43
Professional Testing	57
Ramsey Electronics	59
Rockwell Scientific	50
Rohde & Schwarz	12
Sealevel Systems	59
Sigmaquest	35
Spectrum Control	49
Strategic Test	59
Testmart/Decibel	19-A/B, 26, 28
Unholtz Dickie	43
Universal Switching	20
V METRO	14
VI Technology	27
W L Gore & Associates	56
Wells-CTI	59
Yokogawa Corp. of America	8

CLASSIFIED

REFURBISHED TEST EQUIPMENT DC-26GHZ Bought and Sold

A-Comm Electronics

303-770-4855 303-770-6266 Fax

Sales List: <http://www.a-comm.com>

Avalon Equipment Corp.

We Buy Test Equipment

888.542.8256

www.avalontest.com

Used Test Equipment

Online Auctions

FREE Wanted Ads

No Commissions

...only at LabX

www.labx.com

TestMART

MADELL TECHNOLOGY

www.madelltech.com

Phone: 714-670-9023, 402-319-4101

E-mail: info@madelltech.com

CA1640-20
20MHz
Sweeping Function
Generator
\$260.00

OK5020
20MHz
2-Channel Analog
Oscilloscope
\$250.00

1GHz Spectrum
Analyzers
AT5011 **\$1225⁰⁰**
AT5010 **\$1025⁰⁰**
AT5010B **\$875⁰⁰**

Transistor Curve Tracer
Current: 0-10A
Voltage: 0-500V,
5KV Optional
Step voltage: 2V/step
Coupling: transistor
matching, field transistor
matching
\$589.00

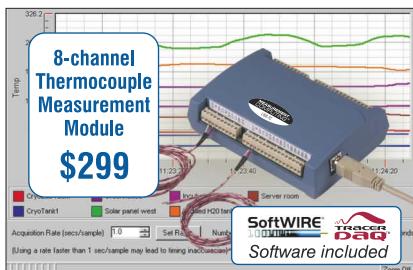
Nx2 CHANNELS
NT Scope-2200
Stand alone
200 MS sampling
10/100T
\$795.00

Multi-user Multi-units for Nx2 channels

Free tools with purchases

Test and measurement, SMT equipment,
Rework stations, Lab equipment,
Bio-laboratory, Optics and more

USB D/A
Modules for
Thermocouples
Process Signals


High accuracy and resolution, the 22-bit
OMB-DAQ-54/55/56 data acquisition systems
directly measure multiple channels of voltage,
thermocouple, pulse, frequency, and digital I/O.

Up to 100 Modules can be attached to one PC
using USB hubs — total capacity of 8,000 channels.

Built-in Cold Junction Compensation for direct
thermocouple measurements. Supplied software
allows configuring a test and display or record data
within minutes, without programming. **\$599.00**

omega.com
OMEGA®

203-359-1660 • www.omega.com

8-channel Thermocouple Measurement Module
\$299

USB-TC

- Thermocouples J, K, R, S, T, N, E, B
- 8 temperature input channels
- Built-in ambient temperature sensor
- Independent temperature inputs
- 8 digital I/O bits
- USB 1.1, 2.0 compatible
- No power supply required.

Also available

USB-TEMP (4 sensor types) \$499
thermocouples, RTDs, thermistors, and semiconductor temperature sensors

www.mccdaq.com
Measurement Computing Corp. (508) 946-5100

IEEE-488 GPIB

PCI • USB • PCMCIA

Plug and play control for all

IEEE-488 GPIB

and HP-IB instruments for
automated test applications.

C, C++, Visual Basic Support

Works with TestPoint, LabVIEW

LabWindows/CVI and VEE

PCI

PCMCIA

PCI-488

iec

USB

20+ years in the GPIB business

ceo

Call 1-800-234-4232 or
visit us at www.cectp.com/tmw

USB Serial & Digital

USB to Serial

- 1, 2, 4, and 8-port models
- RS-232, RS-422, and RS-485 interfaces
- Data rates to 921.6 kbps

USB to Digital

- 48/96 TTL (SSR rack compatible)
- Reed and Form C relay outputs
- Optically isolated inputs
- Daisy chain multiple units

SEALEVEL
Sealevel Systems, Inc. sales@sealevel.com
864.843.4343 TEL www.sealevel.com

Looking For A Perfect RF Tight Test Environment?

We think you'll
find our patent-
ed STE Series RF
Test Enclosures
your better
choice!

Wireless Device Testing...Made Easy!

- ✓ Perfect for 802.11a, b, g
- ✓ Cellular, PCS, GSM Tests
- ✓ Bluetooth, RFID, 3G Tests
- ✓ Wide Variety of Interface & Connector Options
- ✓ Isolation Up To 18GHZ!
- ✓ FAST Delivery!
- ✓ Thousands Shipped Worldwide!

www.ramseytest.com
ramsey 800-446-2295

Great Deals @ Circuit Specialists, Inc.

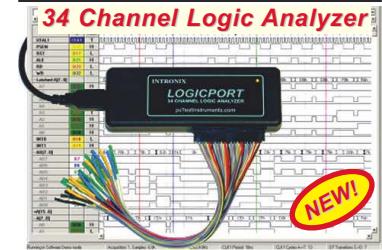
3201 2GHz RF Field Strength Analyzer

\$1699.00

\$1299.00 !

Compare at over
\$2000.00!

Extensive Details &
a Special Offer at
our web site under
Test Equipment


Over 8,000 items at:

www.CircuitSpecialists.com

3290 2.9GHz RF Field Strength Analyzer

Wide Band Reception for:
Mobile Systems
Cellular
Cordless
CB
 Paging
Cable TV
Satellite TV
Hidden Camera
Teletapping
Only
\$1899.00 !

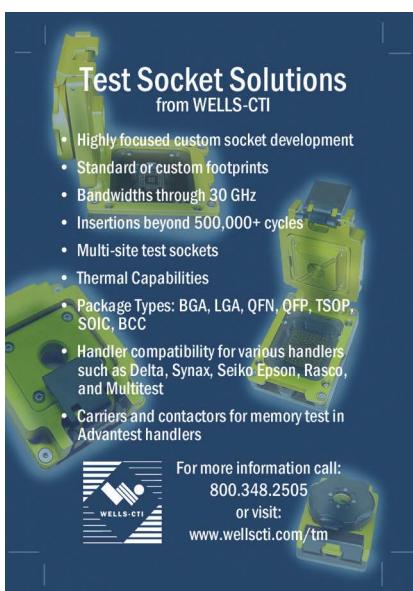
www.CircuitSpecialists.com under
Test Equipment

34 Channel Logic Analyzer

500MHz Timing Mode
Sample Rate

\$369.00!

Full Details on Web Site
Item# LOGICPORT

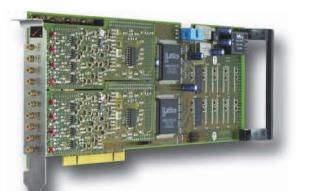


A Sophisticated
Scope Adaptor

200MHz USB DSO
\$899.00

Full Details on web
Item#: 200DSO

Circuit Specialists, Inc.
www.CircuitSpecialists.com
800-528-1417 / Fax:480-464-5824


Test Socket Solutions from WELLS-CTI

- Highly focused custom socket development
- Standard or custom footprints
- Bandwidths through 30 GHz
- Insertions beyond 500,000+ cycles
- Multi-site test sockets
- Thermal Capabilities
- Package Types: BGA, LGA, QFN, QFP, TSOP, SOIC, BCC
- Handler compatibility for various handlers such as Delta, Synax, Seiko Epson, Rasco, and Multitest
- Carriers and contactors for memory test in Advantest handlers

For more information call:
800.348.2505
or visit:
www.wellscti.com/tm

UltraFast Digitizer Cards

P/N: UF3132

- ✓ 8 x 25 MS/s 12-BIT A/D channels
- ✓ Simultaneous sampling
- ✓ 8 to 256 MSample onboard memory
- ✓ 8 input ranges from ±50 mV to ±10 V
- ✓ c/c++, LabVIEW®, MATLAB®, VEE®, Linux...

Visit our website for datasheets!
> 150 A/D, AWG, Digital PCI, PXI, cPCI models!

www.strategic-test.com/uf31
(866)898-3278

ROBERT HUM

VP & General Manager
Design Verification and Test
Division
Mentor Graphics
San Jose, CA

Robert Hum joined Mentor Graphics with Mentor's acquisition of IKOS Systems in 2002. Hum has more than 25 years of experience in engineering, marketing, business development, and operations. Most recently, he served as the executive VP and COO of IKOS, and he has also held senior business and technology management positions at Cadence Design Systems and Bell-Northern Research (Nortel). Hum has an MSEE from McGill University in Montreal, QC, Canada.

► The online version of this interview includes more Q&A with Robert Hum, where he describes in detail Mentor's verification and test offerings and elaborates on the future of DFT:

www.tmworld.com/archives

DFT drives yield improvement

At Mentor Graphics, Robert Hum is responsible for verification tools such as 0-In, ModelSim, and Questa, and for DFT tools such as TestKompress. Chief editor Rick Nelson spoke with him at the Design Automation Conference and followed up with a phone interview.

T&MW: At DAC, you said that more than 50% of design is verify and test. Could you explain?

Hum: Several studies have measured how many engineering hours go into certain activities. About a third of the design activity involves translating written specs in English into RTL. The other two thirds of the time is verification. It's writing functional test benches and verifying that your design, in fact, does meet the spec and that you have correctly implemented it.

T&MW: What verification and test products does Mentor offer?

Hum: On the design-verification side, we offer ModelSim and Questa. For test, we offer FastScan ATPG and TestKompress as well as built-in self-test products for both logic and memory. We also offer a boundary-scan product called BSDArchitect.

T&MW: TestKompress was introduced in part to address vector-memory limitations on test hardware—are memory limitations still a problem?

Hum: Yes. The memory problem on testers has gotten much worse. The number of vectors generated these days is absolutely enormous. There are two things to worry about: One is the amount of memory you have on a tester, and the other is test time.

While memory is pretty cheap these days, the problem with putting more memory on testers is that you then have to clock all the test vectors into your part, and on scan chains you generally limit the clock speed because of power problems, increasing test times drastically. So, TestKompress's ability to compress test vectors and reduce test time is very important.

T&MW: What is driving interest in design for yield (DFY)?

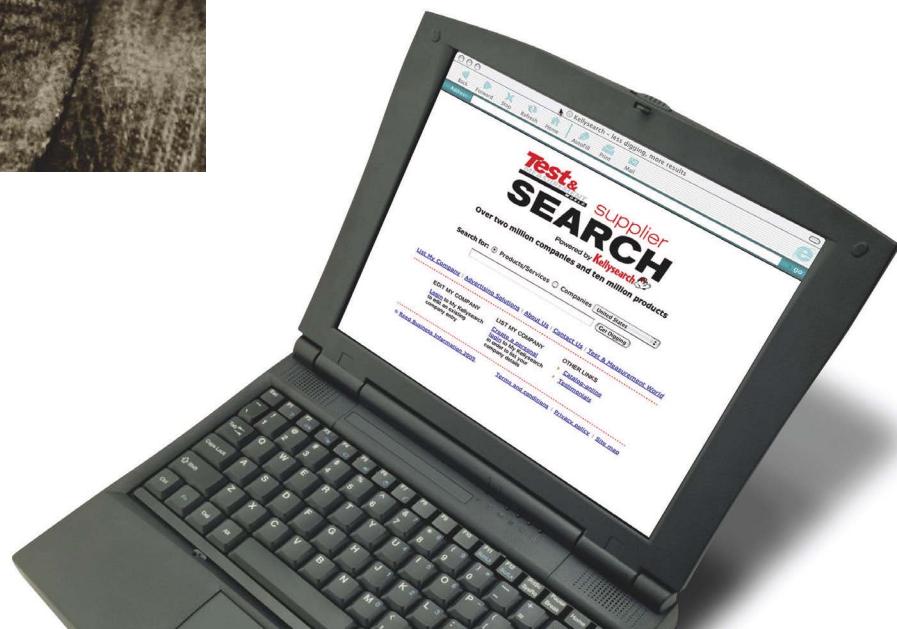
Hum: Yield learning is taking a lot longer than it did. Folks typically use test chips to determine basic transistor characteristics and to calibrate Spice models. Library vendors then build models that run on simulators and timing analyzers, and people construct various geometries to calibrate their OPC [optical proximity correction] processes and, when that's done, say this node is now ready for production. But they do their first couple of masks and get their first chips through and find yield isn't what they expected. They scratch their heads and ask what happened. DFY can prevent these kinds of problems.

T&MW: What is the next level in DFT?

Hum: The next level is going to be its application to this yield enhancement. If you have made an investment in scan design, you will be able to use your investment to analyze, control, and improve yield. We believe the next level of DFT is going to be the addition of diagnostics so you'll be able to diagnose thousands of parts rather than tens of parts per design, as you do today.

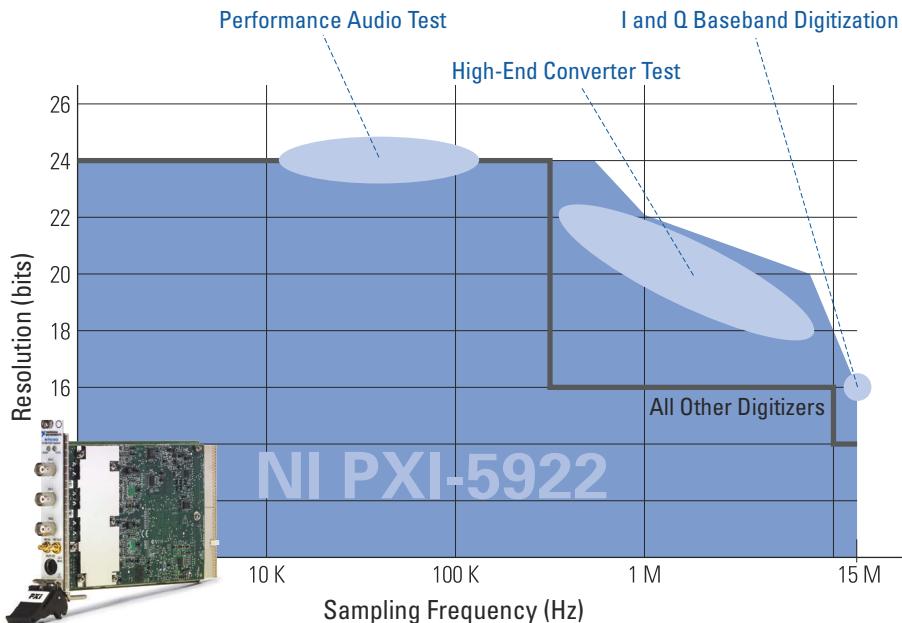
T&MW: Have test-bench languages like e and Vera had a positive effect on errors?

Hum: With any new technology, you need to ask what value it adds. A technology can make you more productive while not fundamentally changing what you are doing, or it can represent a shift in methodology that improves productivity and solves a problem. My research shows that the use of test-bench languages such as Vera and e has had a productivity impact but no discernible impact on the number of errors per design. If you had two spins per design before buying into Vera or e, you will still have two spins per design afterward. **T&MW**


TMWsuppliersearch.com

**Better than trying
to read your
customer's mind.**

Putting your product catalog on TMWsuppliersearch.com makes it accessible 24/7/365. Better yet, we also make it word-searchable, which means that whatever is in your customer's head matches precisely with what's in your catalog. No muss, no fuss and no nasty electrodes. Make your catalog word-searchable today and close more sales. **Contact your Test & Measurement World sales representative at 781-734-8416.**


**Test &
MEASUREMENT
WORLD** supplier
SEARCH
Powered by **Kellysearch**

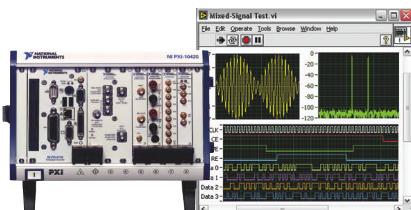
 Reed Business Information

Industry's Highest-Resolution Digitizer

From 24 bits up to 500 kS/s to 16 bits at 15 MS/s

To view a seven-minute online demo of the NI PXI-5922, go to ni.com/modularinstruments.

(800) 449 6347 or ni.com


Discover the Signals You've Been Missing

The new National Instruments PXI-5922 flexible-resolution digitizer uses patented techniques to deliver the highest resolution and highest dynamic range of any digitizer today up to 15 MS/s.

The dual-channel digitizer features:

- Flexible resolution from 24 bits up to 500 kS/s to 16 bits at 15 MS/s
- Spectral, audio, vibration, and communications analysis software
- -120 dBc typical SFDR and -120 dBFS rms noise
- Deep onboard memory up to 256 MB per channel
- Integrated antialias protection for all sampling rates

With innovative hardware capabilities and more than 400 measurement and analysis functions, the NI PXI-5922 revolutionizes dynamic measurements for user-defined applications. From DC to RF, NI modular instruments power measurements from prototype to production.

Define your test system with NI modular instrumentation.

Multimeters	7½ digits, 1000 V
Audio Analyzers	24 bits, up to 500 kS/s
Digitizers	8-24 bits, up to 200 MS/s
Signal Generators	Up to 16 bits, 200 MS/s
High-Speed Digital I/O	Up to 400 Mb/s
RF	2.7 GHz, 20 MHz RTB
Switching	Multiplexers, matrices, RF switches, relays
Multifunction I/O	Analog input and output, digital I/O, counters